TIMEPAC Academy

Session 3 How to use the 3D models and the EPC in order to analyse energy savings

Presenter: Alice Gorrino (Edilclima srl)

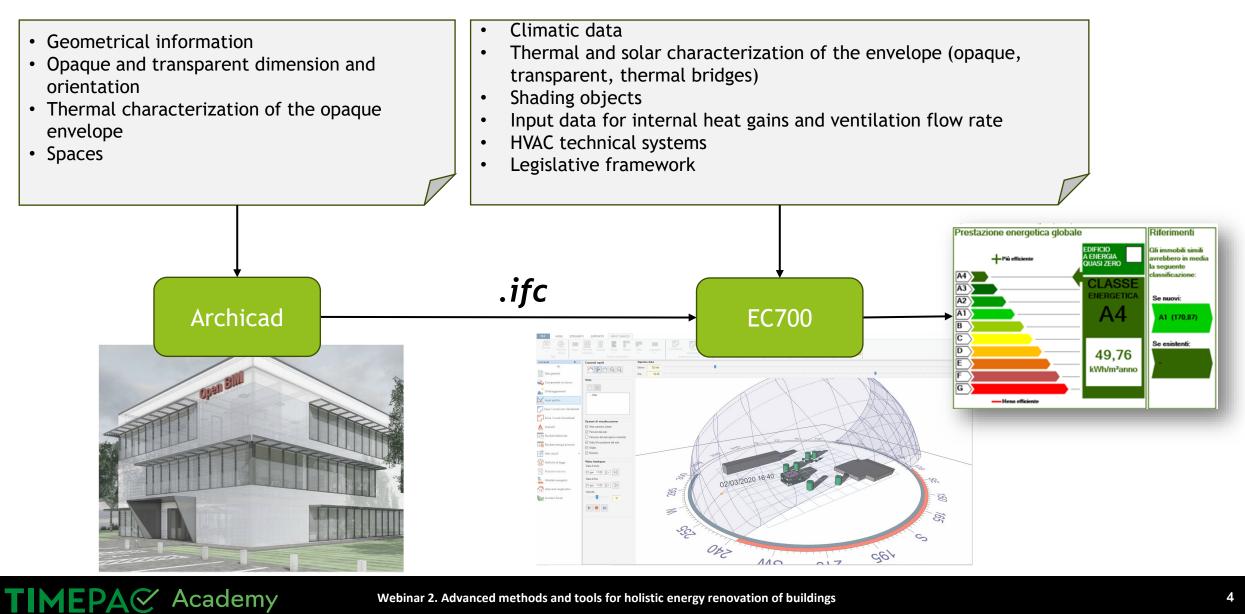
5 March 2024

REPUBLIC OF SLOVENIA MINISTRY OF THE ENVIRONMENT, CLIMATE AND ENERGY

SERA

Institute for Sustainable Energy and Resources Availability

Objective of the presentation


To show a procedure for generating the Energy Performance Certificate (EPC) through the use of a BIM approach coupled with an Italian EPC generation tool

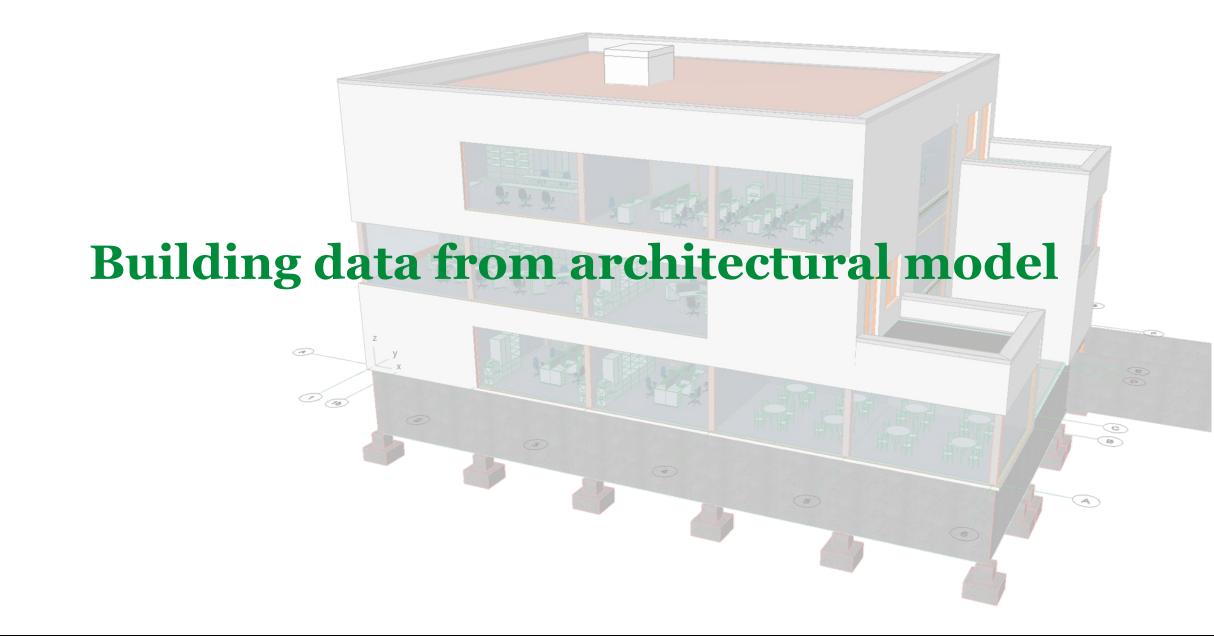
- Pointing out some tips and tricks for performing the architectural BIM model to better interconnect BIM with EPC tool
- Focusing on the 3D model of the building envelope
- Listing the information needed for the energy performance and showing how to complete the BIM architectural model for creating the model for EPC generation

Content of the presentation

- Workflow of the calculation procedure
- Case study
 - Building data from architectural model
 - How to prepare the architectural BIM model
 - Importing the .ifc file into the EPC generation tool
 - Adding information on the EPC generation tool

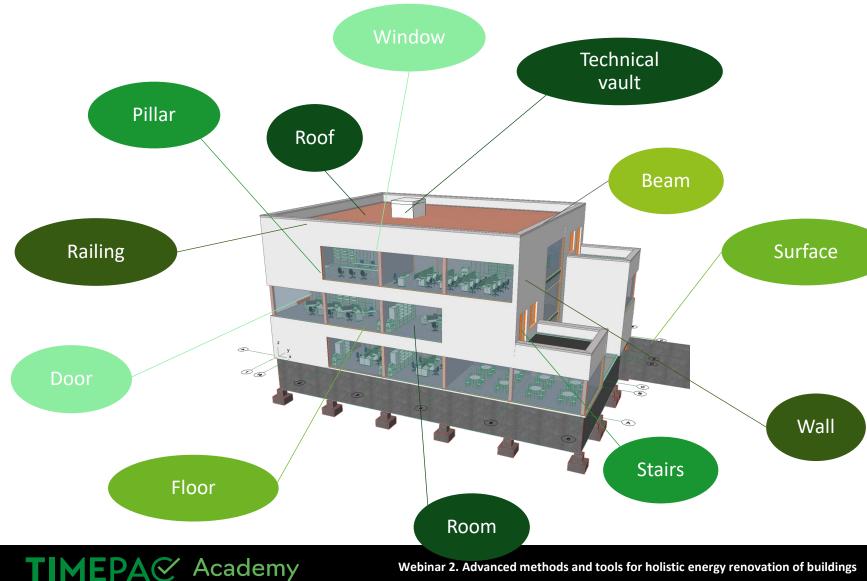
Workflow and softwares used

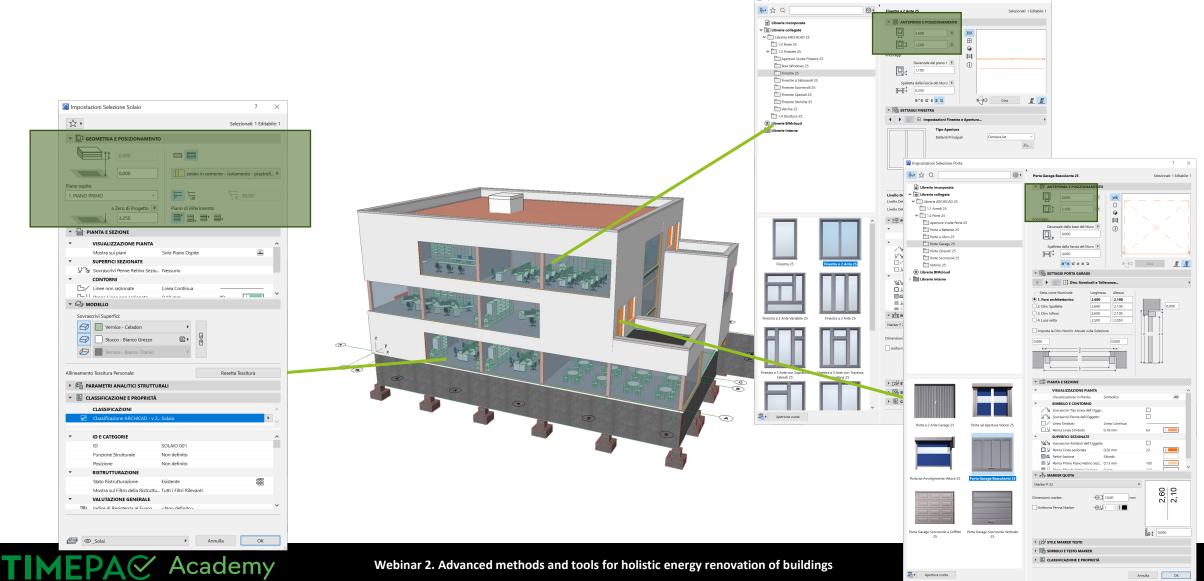
Case study - description


Building type: office building **Location:** Rome **Conditioned net floor area:** 1400 m²

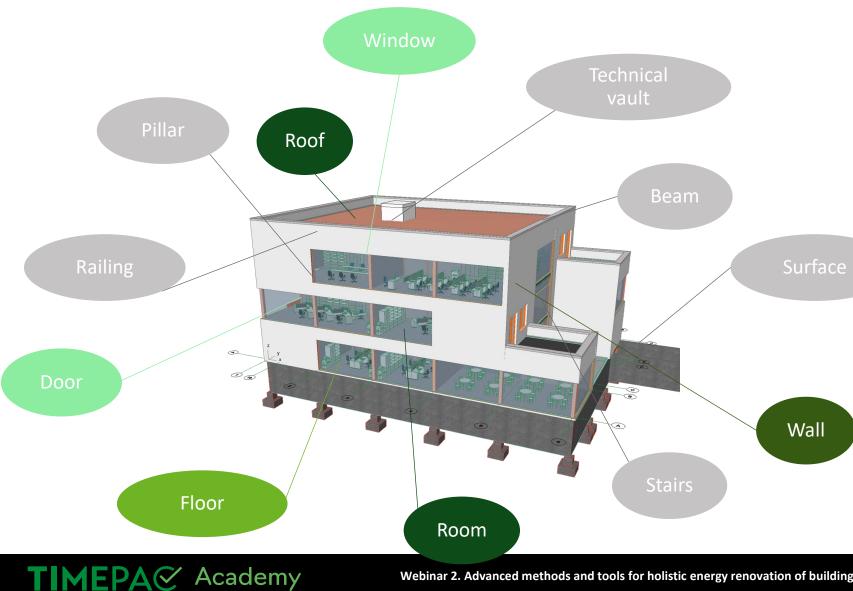
Software for architectural modeling: Archicad, Graphisoft

Software used for the EPC generation: EC700, Edilclima srl

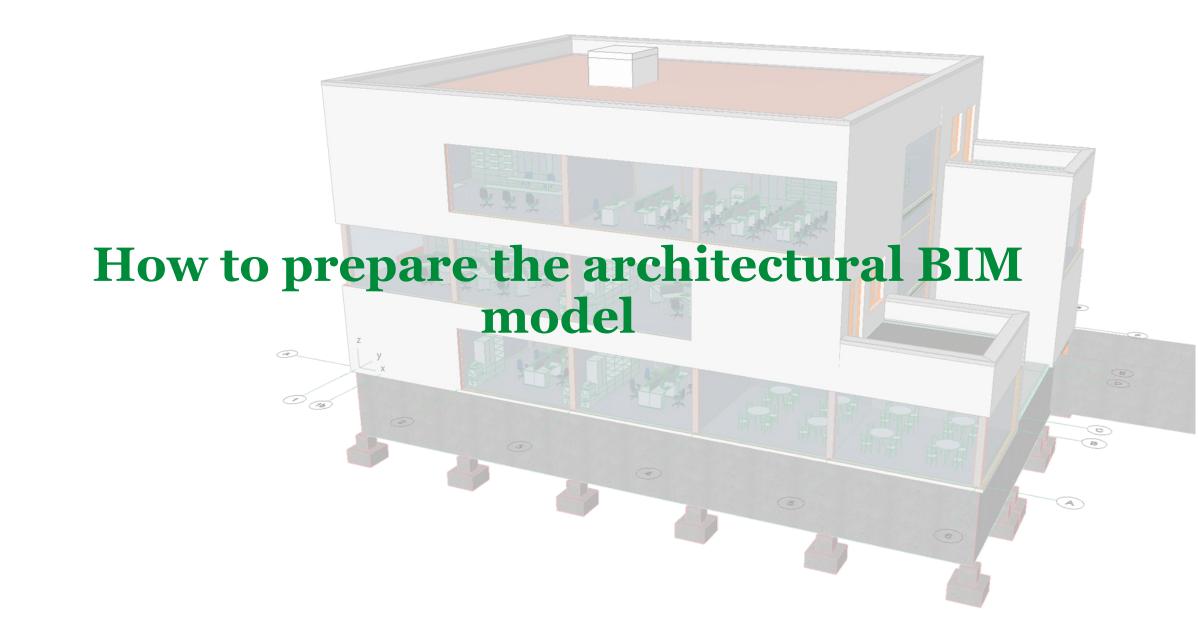

TIMEPA Academy


Architectural BIM model for energy performance calculation

The architectural model contains a vast amount of data, including elements that are not necessary for energy evaluation.

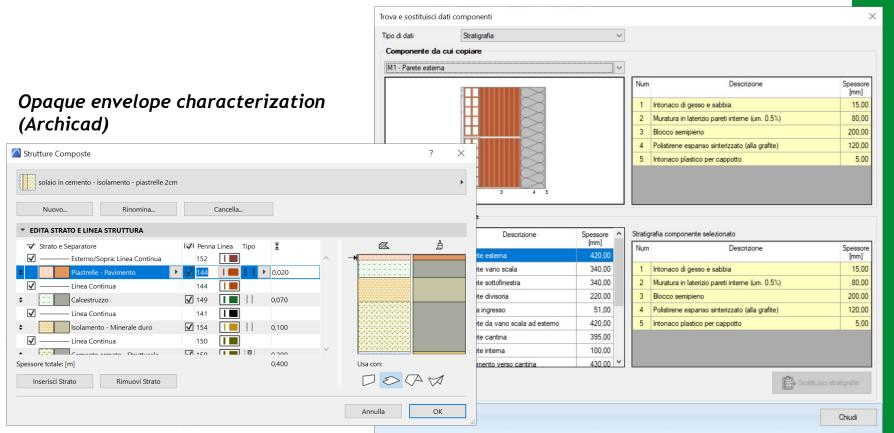

The product receiving the IFC file should be able to choose which objects are of interest for the specific evaluation and which ones should not be considered.

Architectural BIM model for energy performance calculation


? X

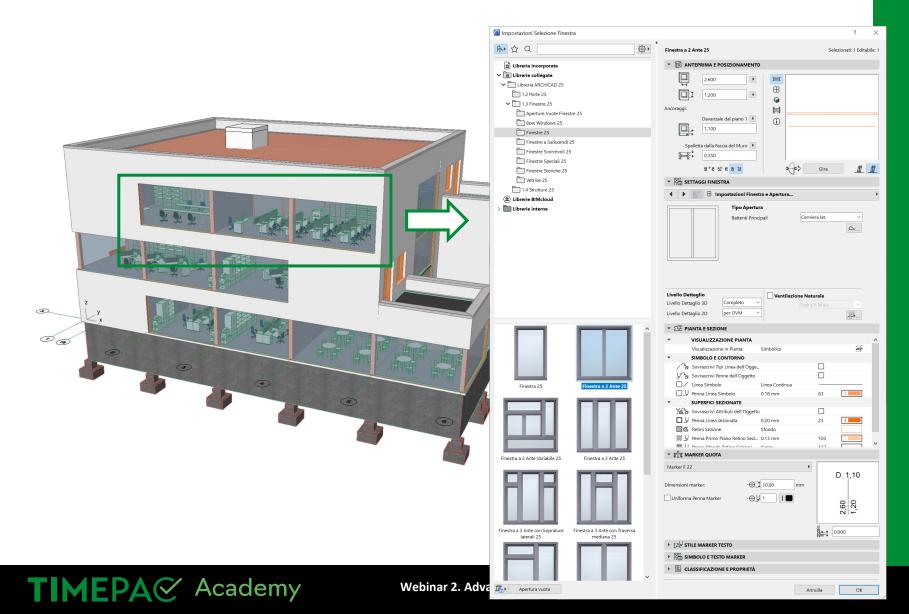
Architectural BIM model for energy performance calculation

During the import process of an IFC into energy evaluation software, it is necessary to exclude certain elements that, despite being present in the architectural model, should not be the subject of analysis.


For the imported elements, only the information necessary for specific evaluations should be acquired.

How to prepare the architectural BIM model – Opaque envelope characterization

Modification/characterization of the EC700 stratigraphy for opaque elements that were not correctly handled in the architectural modeling software

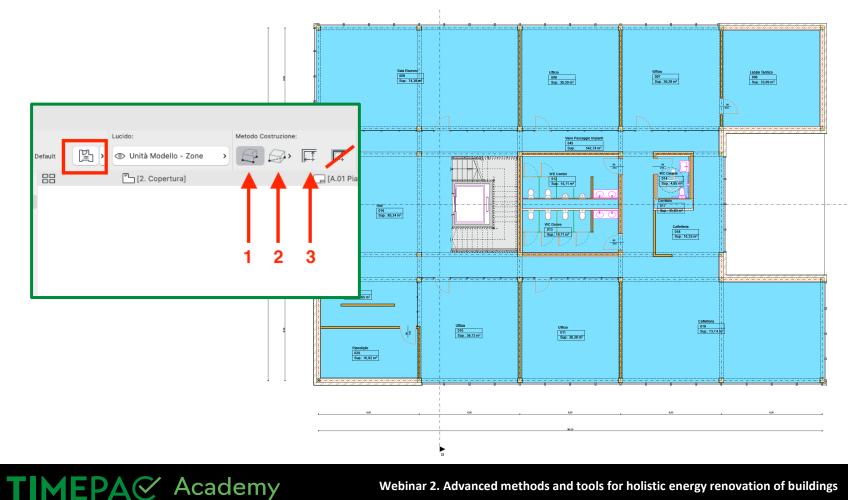

TIMEPA Academy

The creation of the opaque and transparent envelope is the first operation to be performed in architectural model creation software.

If possible, the layers of the envelope components should be characterized in the architectural model.

Otherwise, this characterization can be done with specific EPC generation tools.

How to prepare the architectural BIM model – transparent envelope characterization


It is necessary to model the windows on the opaque envelope created before. Otherwise, double surfaces may be counted, as both the opaque and transparent parts will be included at the same position.

Additionally, elements like roller shutter boxes should not be included in the window modelling.

Despite being part of the window component, these elements need to be distinguished for energy evaluation purposes and should be modeled as separate elements.

How to prepare the architectural BIM **model** – creation of the spaces

Include in the model the IfcSpace Avoid totaly or partial overlapsof spaces!

IfcSpace need to be included. These elements are used to identify each individual environment and define certain characteristics that will later be used for subsequent evaluations.

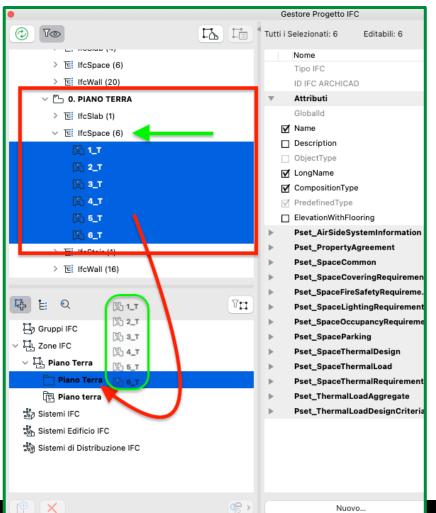
The **information** extracted from these elements via IFC will pertain to surfaces and volumes.

All other discipline-specific details, will be added to these entities downstream of the import (e.g. occupant profile, ventilation air flow etc.). It is crucial that **spaces** do not intersect with each other either horizontally or vertically, as overlaps will result in additional and inaccurate quantities of surfaces and volumes.

How to prepare the architectural BIM model – creation of the spaces

It is important to check that the boundaries of the spaces touch all the enclosing surfaces both **laterally and superiorly**.

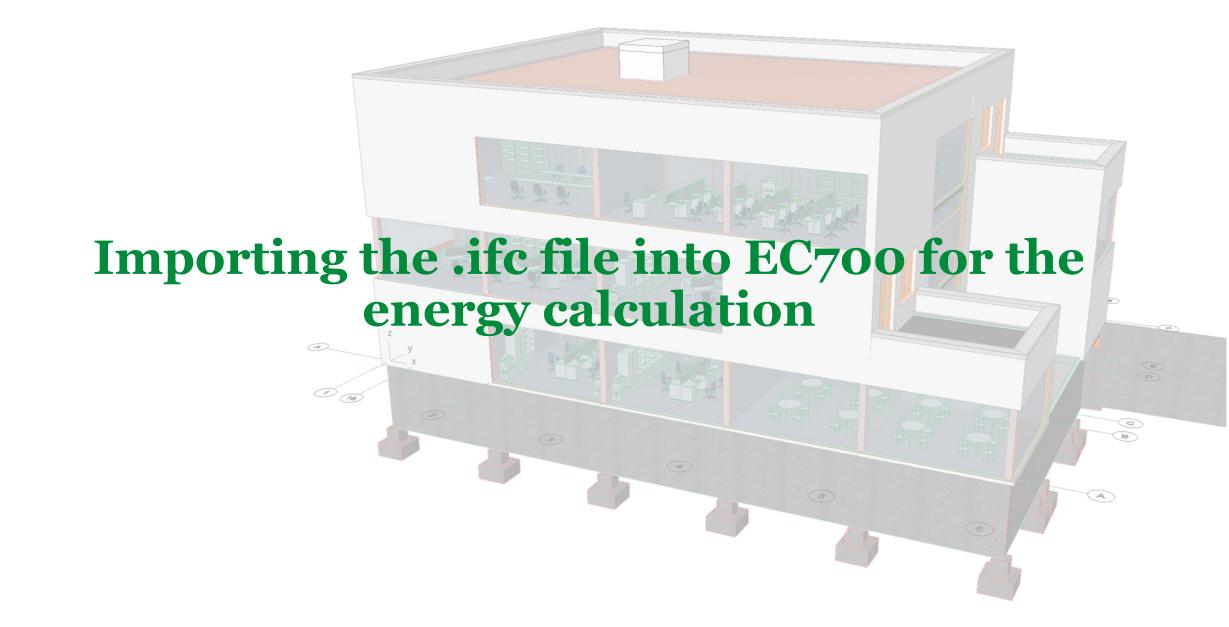
It often happens that the upper offset of the rooms is not properly checked, and if the room does not extend to the element that encloses it from above, this will result in the loss of that thermal surface.


TIMEPA Academy

How to prepare the architectural BIM model – creation of the thermal zones

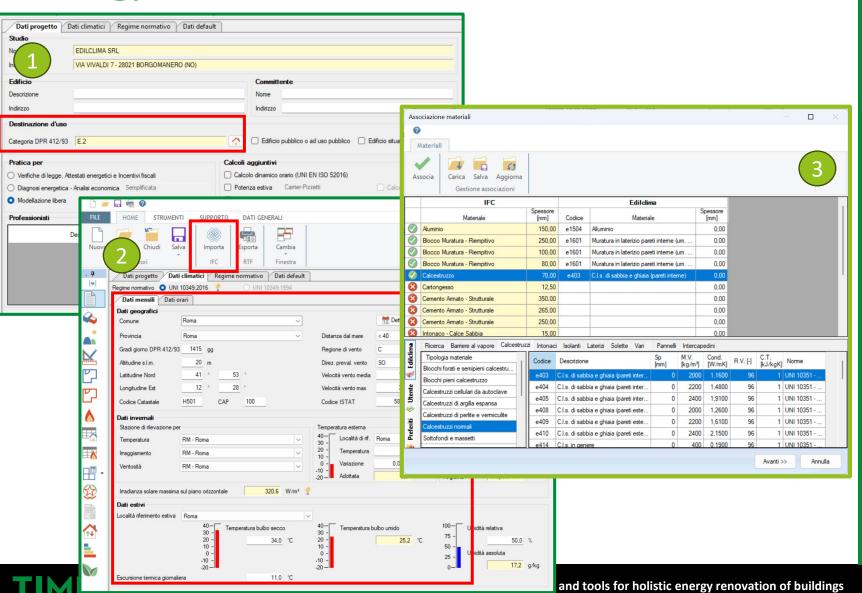
Grouping the spaces for the creation of thermal zones, for energy calculation purposes

Exporting the Ifc file


The spaces, (blue in figure), must be associated with a reference **thermal zone**.

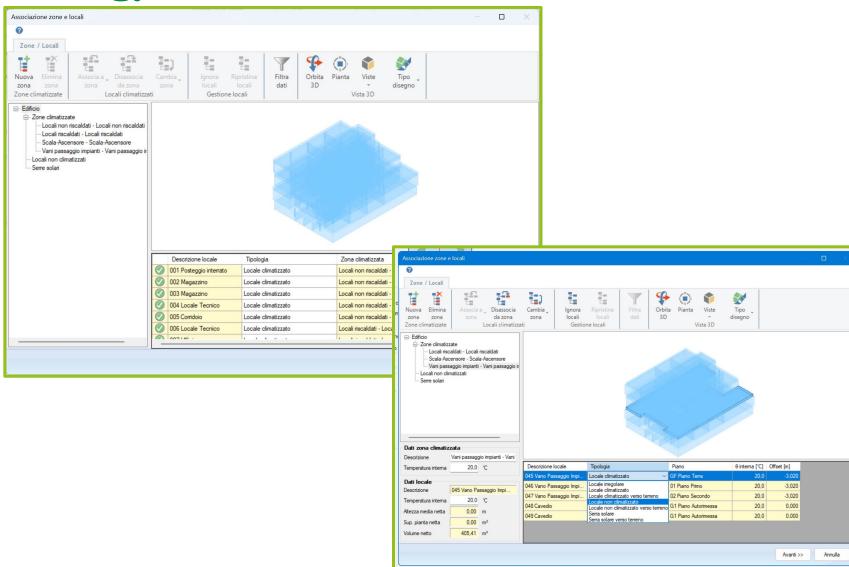
Each architectural modeling software performs this operation in its own way.

For example, **Archicad** allows these groupings to be done after the modeling phase, **when exporting the IFC file**.


These steps may also not be executed in the architectural modeling software.

In this case, they should be performed during the IFC import phase in EC700, as this information is necessary for the subsequent energy assessment.

Importing the .ifc file into EC700 for the energy calculation

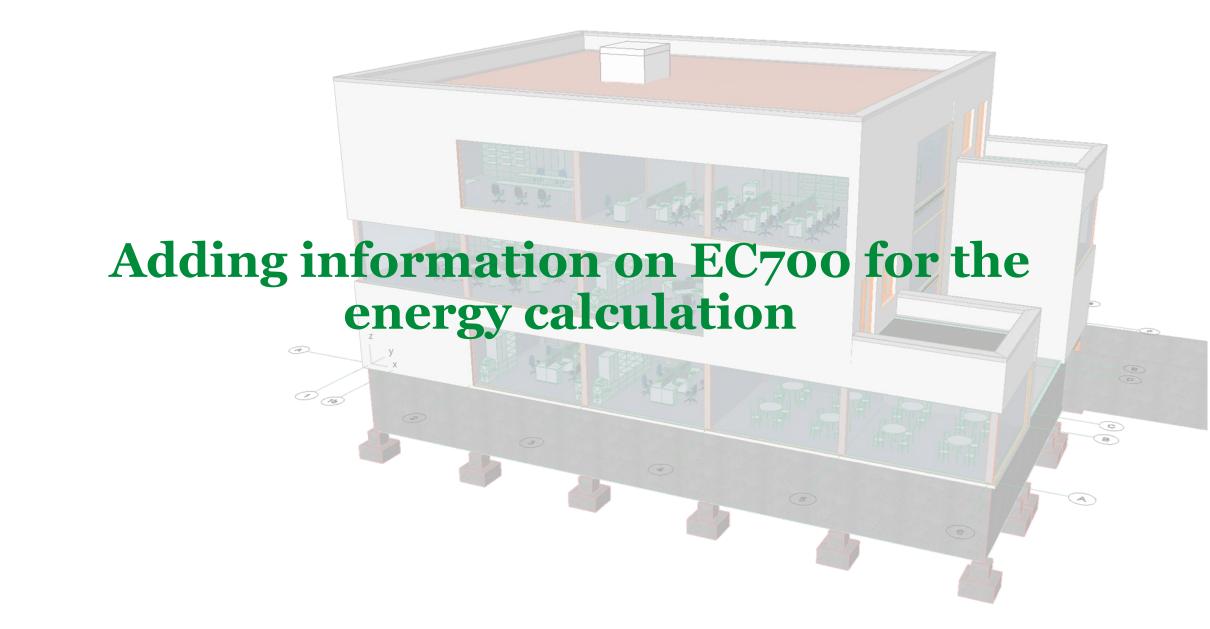

The import phase is activated after entering the building typology and the climatic data.

During the importation phase, it is requested to add the information that are not yet contained in the .ifc.

In the first dialogue window, you are prompted to associate each material found in the architectural BIM model with a material present in the archives provided by the EC700 tool.

In the next release of EC700 this will be done semiauthomatically!

Importing the .ifc file into EC700 for the energy calculation


After the material association, you should perform the **thermal zone** association.

In this example, zoning associations had already been done, so it was not necessary to perform them again.

However, there is still the option to **modify the existing associations** or move rooms from one category to another.

In .ifc file there is no information about the **unheated zones**. Therefore, these rooms are manually identified.

TIMEPA Academy

Image: Book and the model of the mail of the	, ф	Componenti 🛛	Muri: M1 - 9,5 Muro Interno							
 Dati generali Stratigrafia Verifica Termoigrometrica Grafici Risultati Mathematica Intelation Stratigrafia Mathematica Intelatio Strat	•	- Muni	Codice M 1 Descrizione 9,5	Muro Interno						
With the data of the functionability of the data of the dat		M2 - 26 Muro Box Perimetrale	Dati generali Stratigrafia	Verifica Termoigro	metrica	Grafici Risu	Iltati			
Pavimenti		M3 - Mattone Intonacato sulle 2 Facce M4 - Porta in Metallo 26 M5 - 28 Muro Interno M7 - 15 Muro Interno - Cartongesso M8 - 43 Muro Tamponamento Perimetrale M9 - 15 Muro Interno - Cartongesso M10 - Porta 26 M11 - Muro fittizio Tipo Curtain Wall		Potenza & Energia Verifica termoigrometrica Dati UNI TS 11300-1 Temperatura estema -4.9 \vee Emissività ε 0.900 Fattore di assorbimento α 0.600 \vee						
P1 - 50 Solaio Piano Terra P2 - 50 Solaio Piano Terra P2 - 40 Solaio Interno P4 - 40 Solaio Interno P4 - 40 Solaio Interno P4 - 40 Solaio Interno P4 - 40 Solaio Interno P3 - 60 Solaio Piano Terra S2 - 50 So	ГЛ			H			Inclinazione sull'orizzonte	Σ	90 🜩	deg
 W1 - Tipo Curtain Wall W2 - Finestra a 2 Arte 26 W3 - Finestra a 2 Arte 26 Dati noti Origine dati Valori noti Trasmittanza potenza Up 1,988 W/m²K Spessore totale 95,0 mm Massa superficiale Ms 78,0 kg/m² Trasmittanza periodica Yie 1,679 W/m²K 			Num Descrizione [mm] [1 Muratura in laterizio pareti interne (um. 0.5%) 80,00			m] [W/mK] 0.00 0.250	Struttura esistente Struttura disomogenea Contributo Invernale/Estivo I+E			
W3 - Finestra a 2 Ante 26 Dati noti Image: Coefficiente albedo circostante Ambjerio a vitarte g Vitaria vitare g Vita		W1 - Tipo Curtain Wall					Dati per motore CENED+2.0			
Origine dati Valori noti Trasmittanza potenza Up 1,988 W/m²K Trasmittanza energia Ue 1,813 W/m²K Spessore totale 95,0 mm Massa superficiale Ms Trasmittanza periodica Yie 1,679 W/m²K	69		🗌 Dati noti 🦿				Coefficiente albedo circostante	Ambie	and i stante g	
Trasmittanza energia Ue 1.813 W/m ² K Spessore totale 95.0 mm Massa superficiale Ms 78.0 kg/m ² Trasmittanza periodica Yie 1.679 W/m ² K			Origine dati Valori noti			6		1		
Spessore totale 35.0 mm Massa superficiale Ms Trasmittanza periodica Yie 1,679 W/m ² K	0		Trasmittanza potenza	Up	1,988	W/m ² K		$ \mathbf{N} $		
Spessore totale 35.0 mm Massa superficiale Ms Trasmittanza periodica Yie 1,679 W/m ² K	H.		Trasmittanza energia	Ue	1,813	W/m ² K				
Trasmittanza periodica Yie 1,679 W/m ² K	and the second s		Spessore totale		95,0	mm				
	13		Massa superficiale	Ms	78,0	kg/m²				
Capacità termica areica 26.032 kJ/m ² K			Trasmittanza periodica	Yie	1,679	W/m ² K				
			Capacità termica areica		26,032	kJ/m ² K				

The first phase of the building modeling after the .ifc import phase consists of the opaque envelope modeling.

All materials that have not been yet associated, may be inserted, together with all properties affecting the energy calculation.

TIMEPA Academy

Muri - riepilogo

Codice

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

M16

M17

M18

Tipo

E

E

E

D

Т

U

Т

Т

Т

D

Т

D

U

U

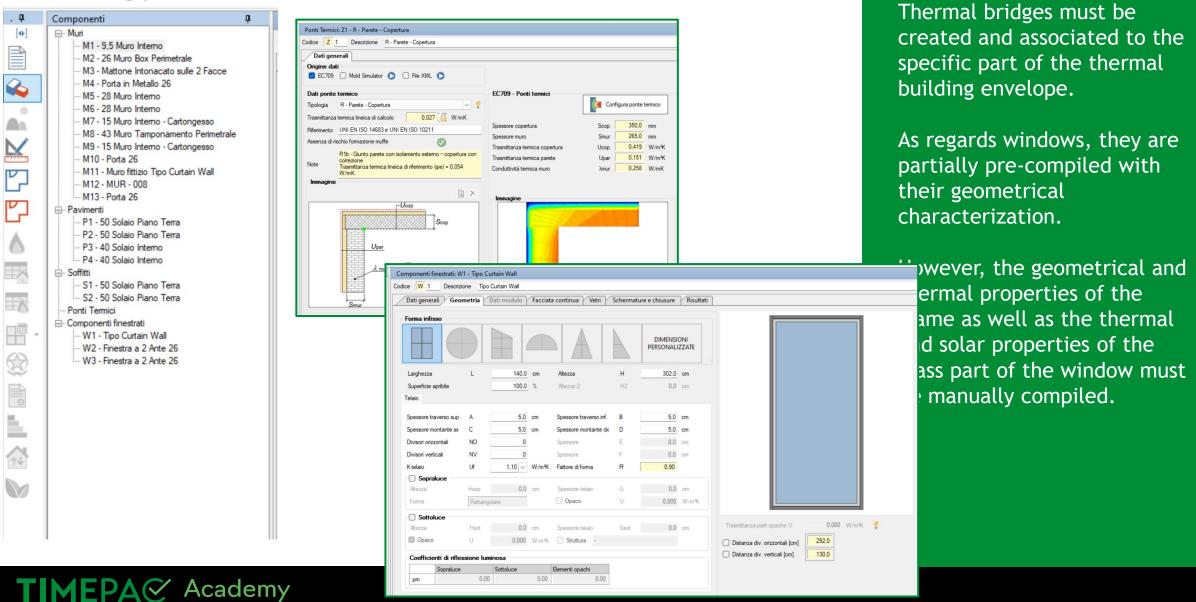
U

E

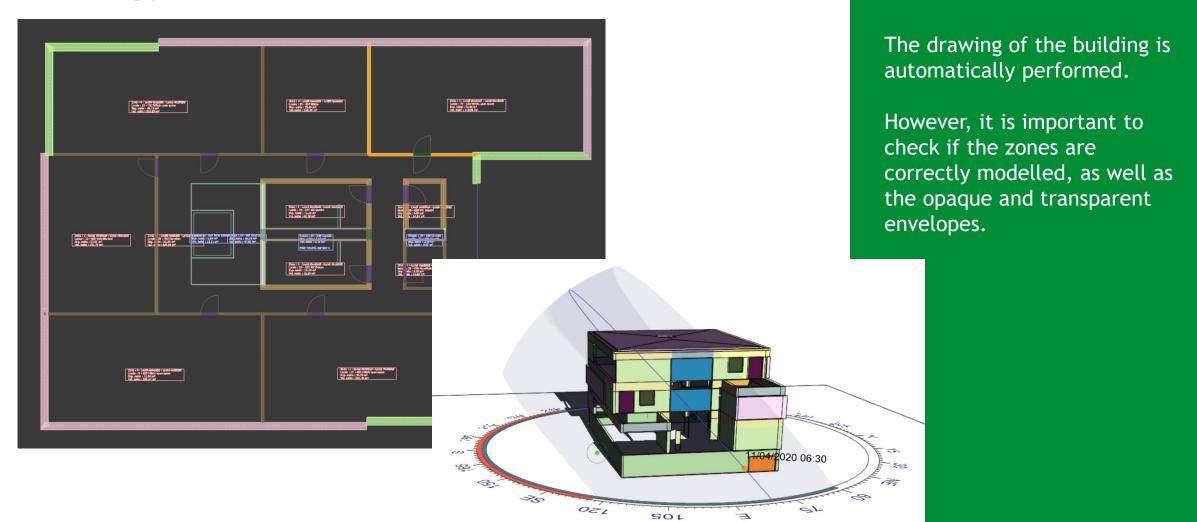
E

Т

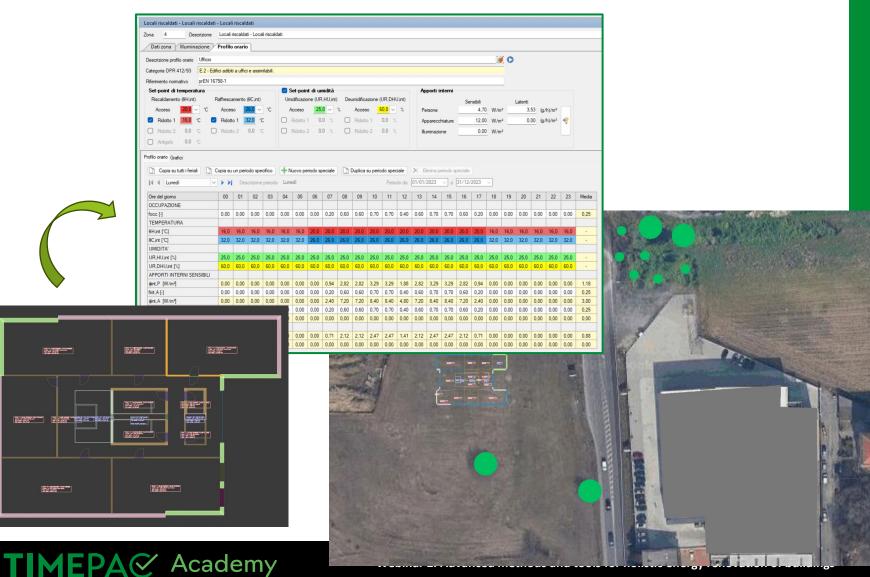
. џ	Componenti
[.	🖃 Muri
	M1 - 9,5 Muro Interno
	M2 - 26 Muro Box Perimetrale
	M3 - Porta Garage Basculante 26
2	M4 - 15 Muro Interno - Cartongesso
	M5 - MUR-EST-430-00
0	M6 - 9,5 Muro Interno
An I	M7 - 15 Muro Interno - Cartongesso
	M8 - 43 Muro Tamponamento Perimetrale
N	M9 - Porta 26
	M10 - Porta 26
רש	M11 - Muro fittizio Tipo Curtain Wall
	M12 - 28 Muro Interno
	M13 - 28 Muro Interno
	M14 - 9,5 Muro Interno
	M15 - 28 Muro Interno
A	M16 - MUR-EST-430-00
0	M17 - 43 Muro Tamponamento Perimetrale
-	M18 - 28 Muro Interno
	- Pavimenti
1000	P1 - 50 Solaio Piano Terra
	- P2 - 50 Solaio Piano Terra
=0	P3 - 50 Solaio Piano Terra
	P4 - 50 Solaio Piano Terra
	P5 - 50 Solaio Piano Terra
0	P6 - 50 Solaio Piano Terra
(\mathcal{A})	P7 - 40 Solaio Interno
\$\$	P8 - 40 Solaio Interno
	P9 - 40 Solaio Interno
14	🖻 - Soffitti
HE.	- S1 - 50 Solaio Piano Terra
and a second	S2 - 40 Solaio Interno
-	S3 - SOL-STR-500-04
	S4 - SOL - 009
	Ponti Termici
	E- Componenti finestrati
	W1 - Tipo Curtain Wall
	W3 - Finestra a 2 Ante 26


TIMEPA Academy

Descrizione		Sp [mm]	Ue [W/m²K]	өе [°С]	Vti	Esistente		
9,5 Muro Interno	95.00	1,812	0.0	8				
26 Muro Box Perimetrale	265,00	2,235	0.0	8				
Porta Garage Basculante 26		0.00	0.000	0.0		0		
15 Muro Interno - Cartongesso		150,00	0,373					
MUR-EST-430-00		430,00	0.000	0.0				
9,5 Muro Interno		95,00	1,619	20,0	8			
15 Muro Interno - Cartongesso		150,00	0,382	0.0	8			
43 Muro Tamponamento Perimetrale		430,00	0,151	0.0				
Porta 26		0.00	0,000	0.0				
Porta 26		0.00	0,000	-				
Muro fittizio Tipo Curtain Wall	Muri: M8 - 43	Muro Tampon	amento Perimetral	e				
28 Muro Interno	Codice M 8		43 Muro Tampon		etrale			
28 Muro Interno	Dati gene	rali Stratigr	afia Verifica Te	rmoigromet	ica	Grafici Risu	ultati	
9,5 Muro Interno	Dati struttu			,			Potenza & Energia Verifica termoigrometri	
28 Muro Interno							Dati UNI TS 11300-1	ua
MUR-EST-430-00				\geq			Temperatura esterna	0.0 🗸 °C 💡
43 Muro Tamponamento Perimetrale							Emissività e	0,900
28 Muro Interno						Fattore di assorbimento a	0,600 ~	
				\leq			Maggiorazione per ponti termici	0.00 %
			FFF	\geq			Inclinazione sull'orizzonte Σ	90 🜩 deg
							100 (100)	
							Altri dati Struttura esistente	0 🥊
	Num		Descrizione		Spes	m] Cond. [W/mK]	Struttura disomogenea	
	1 Intona	co di gesso				5,00 0,400	Contributo Invernale/Estivo	I+E V
	2 Muratu	ura in laterizio pa	reti interne (um. 0.5%)	25	0.00 0.250	Porta opaca	
	3 Poliure	etano espanso rig	gido perm. ai gas (sp	<= 80 mm)	15	0.00 0.028	Cassonetto	
	4 Intona	co di calce e sal	bbia		1	5,00 0,800	Importa cassonetto da EC709	
	Dati noti	. @						
	Origine dati	Valori n	oti					
	Trasmittanza	potenza		Up	0,152	W/m ² K		
	Trasmittanza	energia		Ue	0,151	W/m ² K		
	Spessore tota				430,0	mm		
	Massa superfi	ciale		Ms	194,3	kg/m²		
	Trasmittanza	periodica		Yie	0.021	W/m²K		
	Capacità term	ica areica			38,327	kJ/mªK		

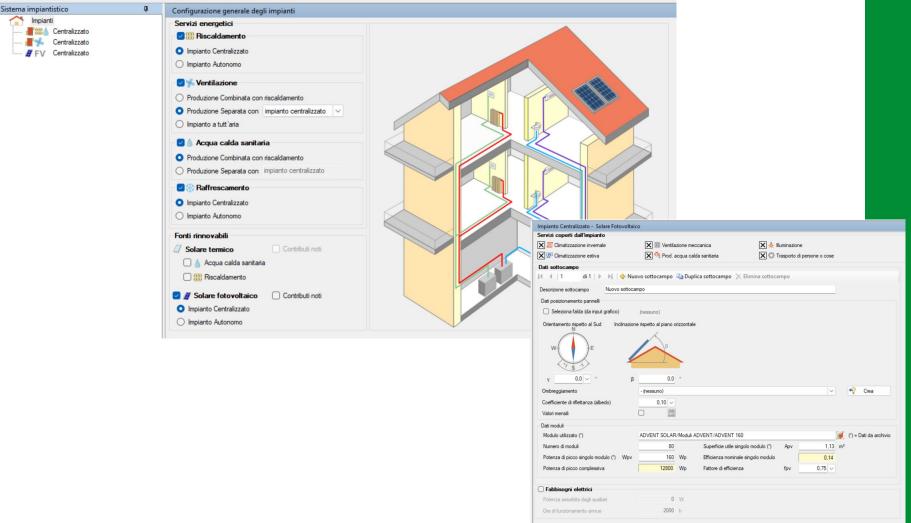

Here is the overview of the envelope components that have been imported into EC700 with a focus on the opaque envelope.

Not all the layers of the components have been recognised (and the corresponding thermal properties e.g. U-values are not yet calculated).


Therefore, it is necessary to model each envelope element together with its specific stratigraphy.

TIMEPA Academy

Webinar 2. Advanced methods and tools for holistic energy renovation of buildings


The drawing should be also implemented with the following elements:

 Thermal bridges both horizontal and vertical, created manually in the building components' section.

Shading objects (balconies, nearby buildings, trees) In the new EC700 release, we will learn to import some shading object automatically!

Data associated to each thermal zone (e.g. user profiles, air flow rate, set point temperature etc.)

TIMEPA Academy

Finally, HVAC systems must be added, together with the renewable energy sources plants.

Webinar 2. Advanced methods and tools for holistic energy renovation of buildings

	ESTATO DI PR ERGETICA DEG ICATIVO:		APE					
DATI GENERALI Destinazione d'uso Oggetto dell'attestato Nuova costruzione				RESTAZION	E ADT	1		
Residenziale X Non residenziale Classificazione D.P.R. 412/93: E.2	Intero edificio Unità immobiliare Gruppo di unità immobiliari Numero di unità immobiliari di cui è composto l'edificio: 1	biliari Passaggio di prop Locazione Ristrutturazione ir Riqualificazione e Altro:	importante DN SI	SUMI STIMATI	o AL:13/09/2033	NE		
Dati identificativi Regione : L Comune : R Indritzo : Plano : Interno : Coordinate G	LAZIO	Zona climatica : D Anno di costruzione : 2023 Superficie utile riscaldata (m ²) : Superficie utile raffrescata (m ²) : Volume iordo riscaldato (m ²) :	Quan	Cushtità annus concumata In uco tandard Ispecificare unità di misura) 35877 KWh Lindice della prestazio energetica non rinnov EPgi.nren KWh/m ² anno 49,76		Energia elettrica		APE
Comune catastale HSOI Subalterni da a Altri subalterni I	da a Sezio	one Foglio da a da	Particella	14658 KWh	Indice della prestazione energetica rinnovabile EPgi,ren KWh/m² anno 46,06	5487, 2964,		m ³ m ²
Servizi energetici presenti Imatizzazione invernale Imatizzazione estiva Imatizzazione estiva PRESTAZIONE ENERGETICA (a sezione riporta l'indice di prestazione onché la prestazione energetica del fabi			Emissioni di COs kg/m² anno 12 elo intervento o con la realizzazione nto dell'edificio o Immobile oggetti	43, 0,03 0,03	,55 kV	Wh/m² anno - W/m²K		
Prestazione energetica del fabbricato	Prestazione energe	etica globale EDIFICIO A ENERGIA		ISTRUTTURAZIONE		Efficienz media stagional	EPre	en EPnren
INVERNO ESTATE	A4 A3 A2	CLASSE	la seguente classificazione: Tempi tell'in	pp di ritorno Invectimento anni (EP _s ,	etica raggiungibile ce ci ngibile realizzano tutti gli ervento lifencenti	74,4 129,5	Пн 26,6 Пс 17,4	17 39,00
	- A1 B C D	A4		0,00 A4	0,00 A4 0,00	0,0	ηw 1,9	
008008	E F G	kWh/m²anno			6,00 kWh/m² anno			
			Pag. 1		Pag. 2	<u> </u>		Pag. 3

EPC generation through EC700

Take aways

BIM authoring tools play a significant role in facilitating the creation of accurate and detailed geometric models of buildings.

The geometrical information within these models is essential for various analyses and assessments, including energy performance assessment.

It is important to properly create the BIM architectural model, otherwise some mistakes may occur in the energy performance assessment

If you would like more information, please visit www.timepac.eu or contact us at

a.gorrino@edilclima.it

Thanks for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101033819

Follow us on Twitter and LinkedIn: @timepac