

Session 4 Data collection and inspection of energy management systems

Boris Sučić Jožef Stefan Institute - Energy Efficiency Centre

TIMEPA© Academy

Session 4 Data collection and inspection of energy management systems

Presenter: Boris Sučić – JSI

23 September 2024

TIMEPA Academy

Cyprus Energy Agency

Jožef Stefan

Introduction – our common challenge

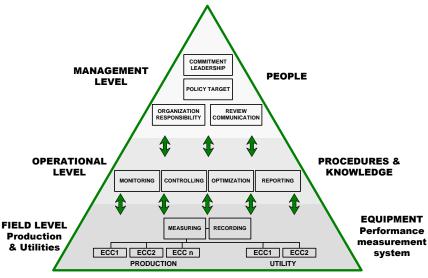
- **Reduction of energy consumption in buildings** is a vital element in the long-term transition towards carbon neutral society
- The EU has identified buildings as being the most promising target for improving energy efficiency and has quantified a significant energy-saving potential associated with infrastructure and equipment investments
- Challenge How the region/city/state can promote greater adoption of new and efficient technologies by consumers?

Assessment of energy performance – Do we really know what we are doing? (1/2)

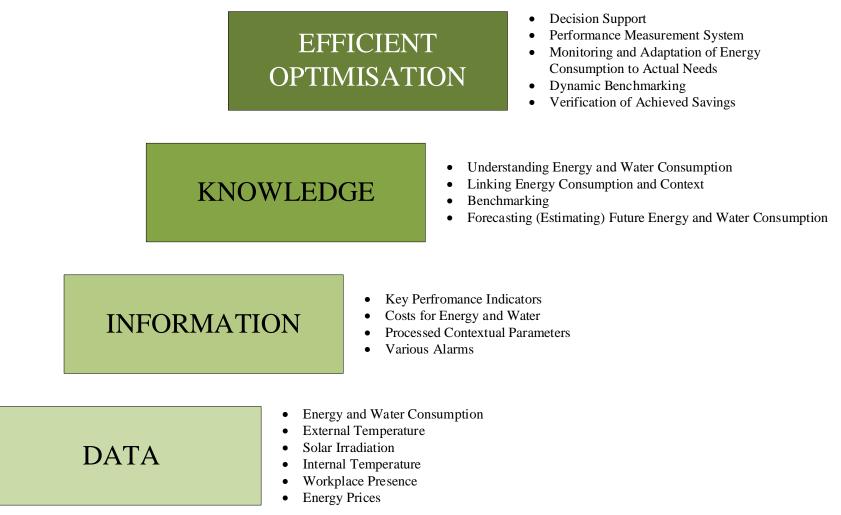
- At the beginning there was a lack of data!
- Energy Auditing was logical step forward
- The ultimate aim of energy audit is clear identifying opportunities for reducing energy consumption and related costs
- From the end-user perspective there is a need for a robust instrument for reliable **verification of energy savings and active support for building operators** to perform necessary activities for systematic reduction of the energy consumption!

Assessment of energy performance - Do we really know what we are doing? (2/2)

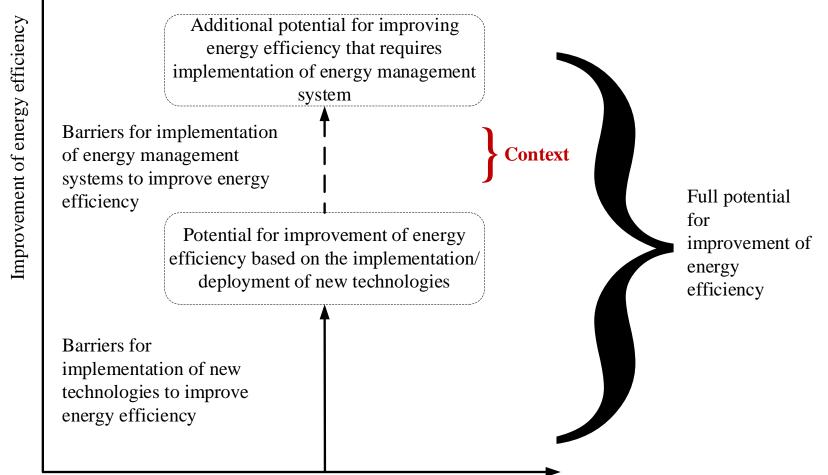
- The house is a machine for living in! (Charles-Édouard Jeanneret, better known as Le Corbusier)
- It is **not dehumanization**, it simply means that the establishment of performance standards becomes necessary element of modern living
- ... When you can measure what you are speaking about, and express it in numbers, you know something about it ... (Lord Kelvin)
- Are there universally applicable solutions?


TIMEPA Academy

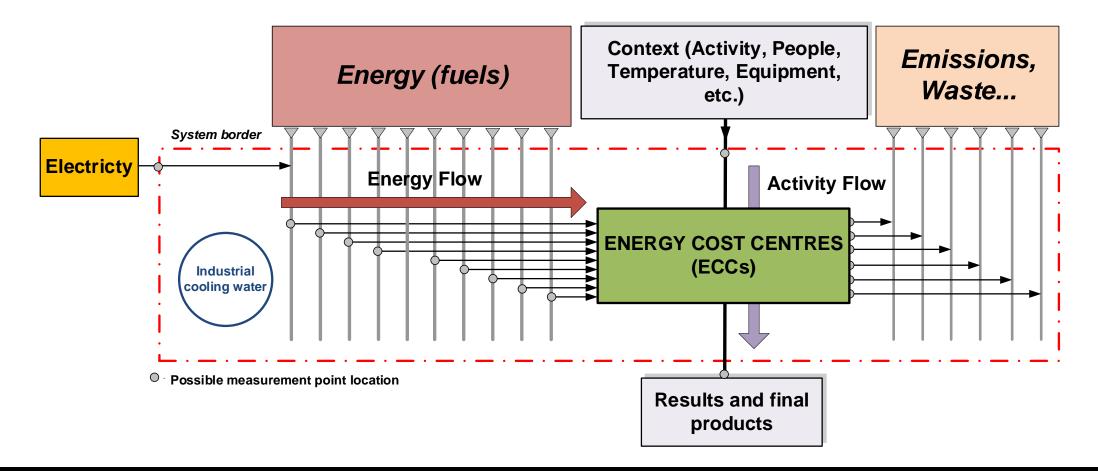
• **Context of energy use!** It is not possible to expect successful implementation of the initially defined energy efficiency programs without the proper understanding of the implementation environment


What does energy management system actually mean?

- Plan-Do-Check-Act (Adjust) Sounds simple but...
- Performance monitoring learning through people's performance evaluation
- A common information system for the assessment of energy performance of buildings + proper understanding of context of energy use + common set of key performance indicators = better energy efficiency culture
- Copy-paste planning the most frequent mistake!



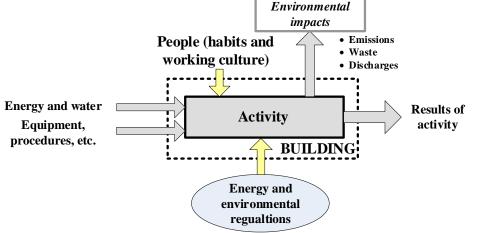
Energy management – systematic process of change towards sustainability



TIMEPA Academy

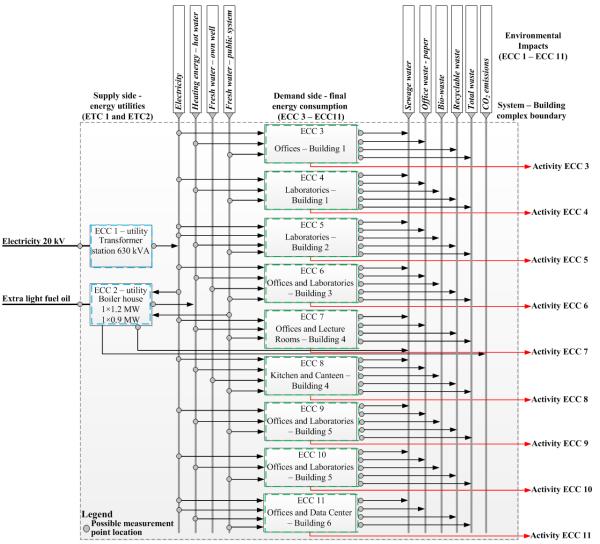
Importance and role of the energy management system in the process of unlocking the full potential for improving energy efficiency

Process Integration - systematic approach to design, analyze, and optimize processes to enhance efficiency, reduce energy consumption, and minimize waste


Energy cost centre based modelling

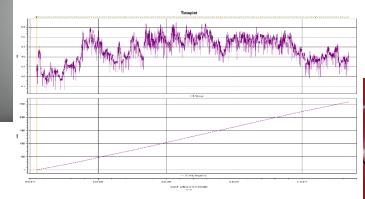
- Integration of energy within the activity flow charts, basis for decisions on setting up the structure of ECC
- On the conceptual level, this method belongs to the family of process integration methods
- It provides methodological approach for connecting energy and activity diagrams into overall framework for improving energy performance

 Different key performance indicators were selected, the most important - Energy Performance Coefficient ratio of actual to predicted or benchmark energy consumption


Completely in line with ISO 50001!!

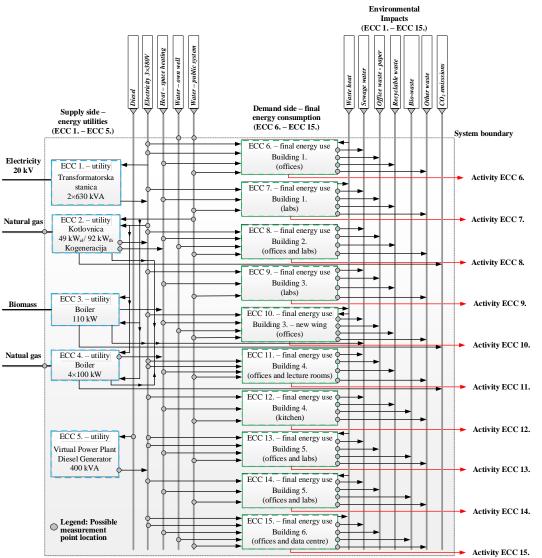
Academy

Implementation at the JSI (1/3)



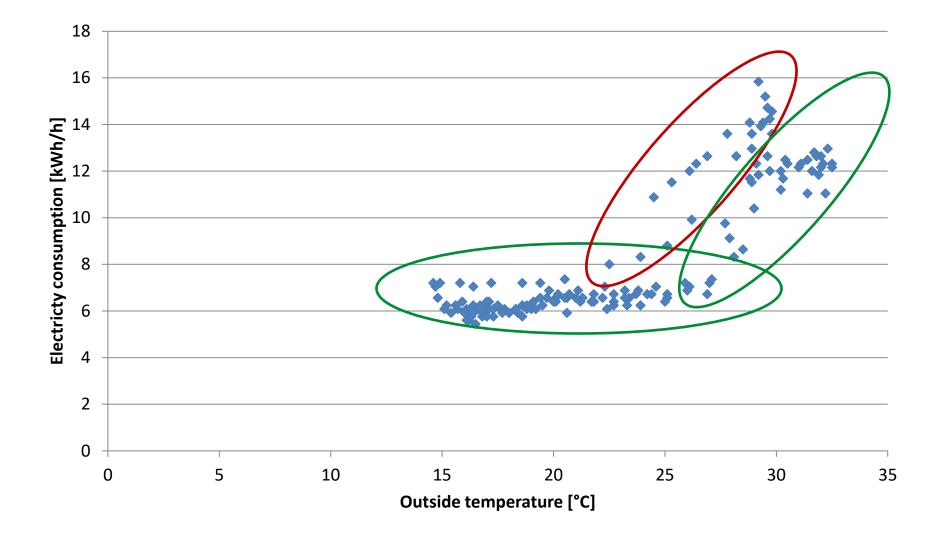
Implementation at the JSI (2/3)

- Additional meters were installed
- Many different metering campagins were conducted

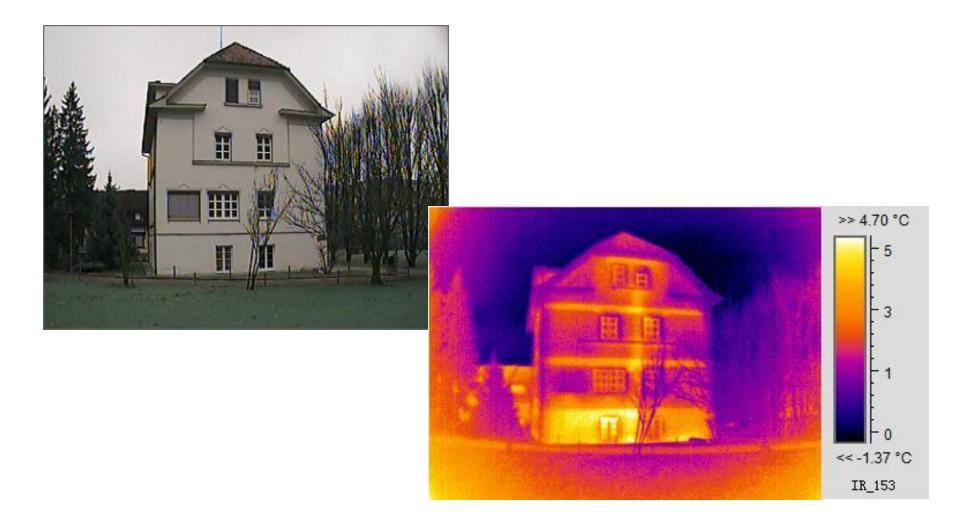


TIMEPA Academy Operational optimisation of b

Implementation at the JSI (3/3)

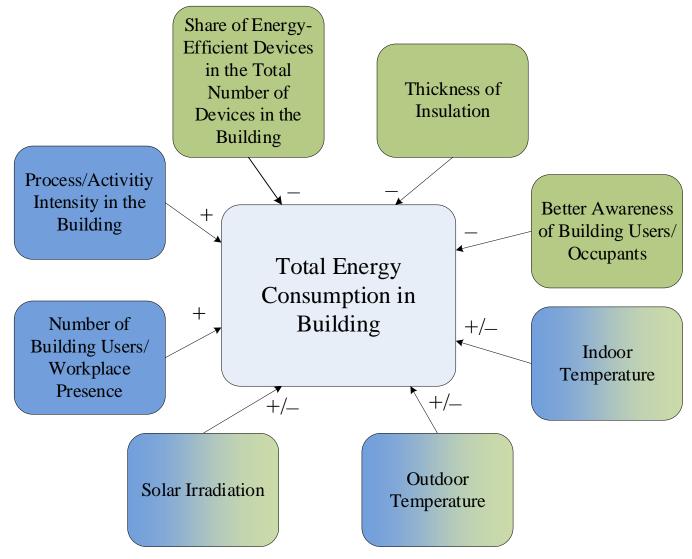

TIMEPA Academy

Measurements without monitoring and targeting are not enough!


- The installation of appropriate additional measurements and remote reading/monitoring is only the first step!
- Many companies already monitor and measure a vast amount of flows in their SCADA systems but the real questions are:
 - Do we effectively use all collected data?
 - Does established reporting provide adequate results?
- Savings in the implementation of an energy management system usually result in minor and, above all, non-permanent savings!
 - Without an appropriate set of indicators and reporting
 - Without establishing an appropriate monitoring and targeting system

Understanding data patterns

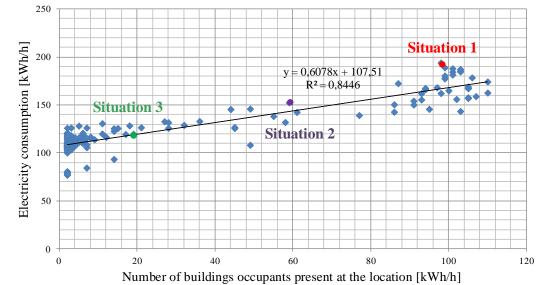
Understanding measured data


TIMEPA Academy

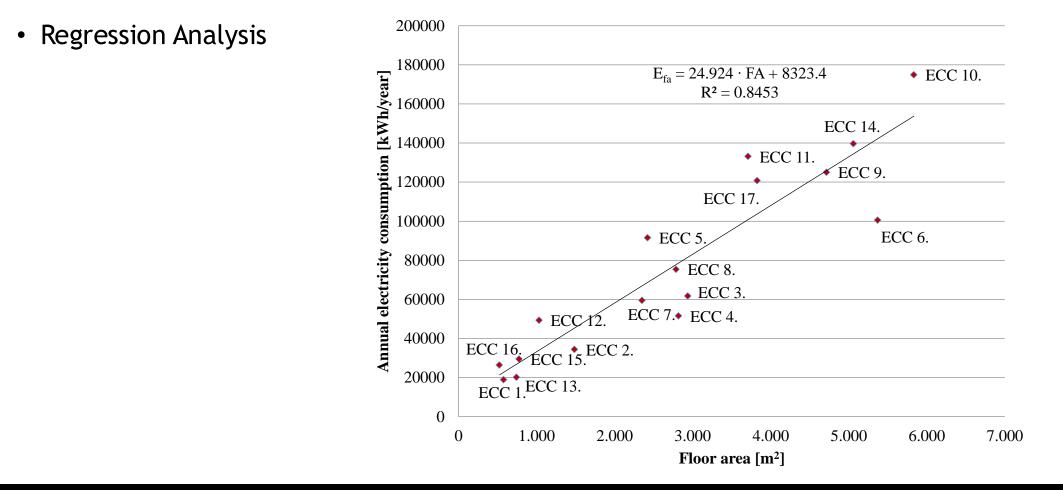
Data needed for the optimal operation of modern buildings

• Energy data

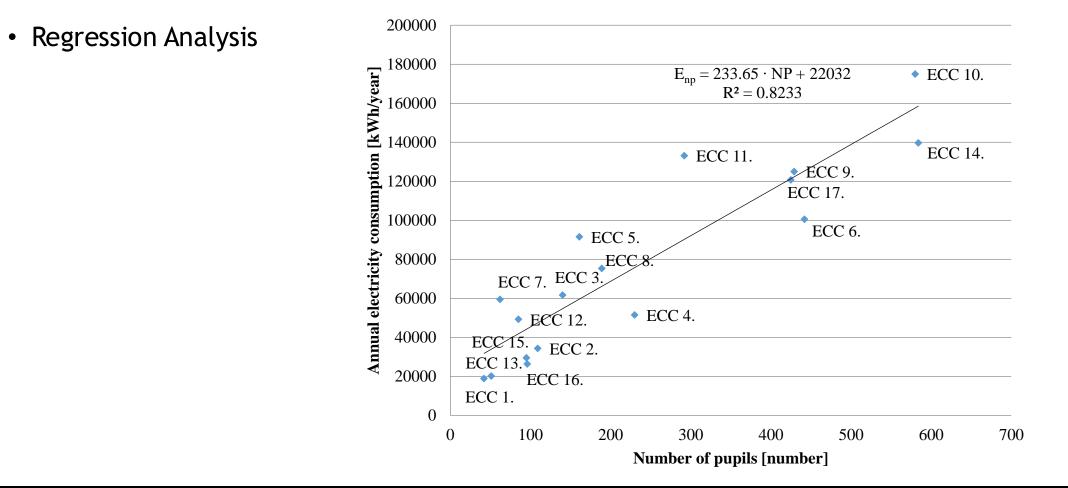
- Energy and water consumption
- Contextual data
 - All other data



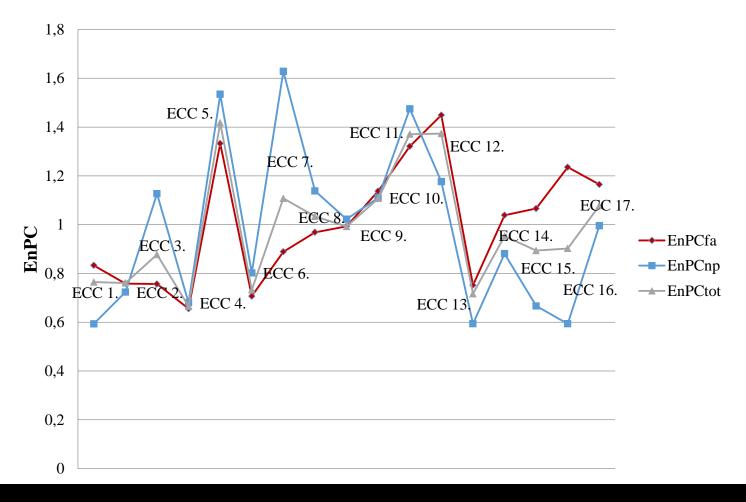
Context of energy use


- Contextual parameters non-energy data essential for a correct understanding of energy consumption (workplace presence, lecture schedule, outdoor/indoor temperature, or the social status of the end user)
- Indicators must contain information about the context of energy consumption
- Specific hourly electricity consumption at the location:
 - Situation 1: 1.8 kWh/employee
 - Situation 2: 2.5 kWh/employee
 - Situation 3: 6.5 kWh/employee

TIMEPA Academy


• In which situation were we the most efficient?

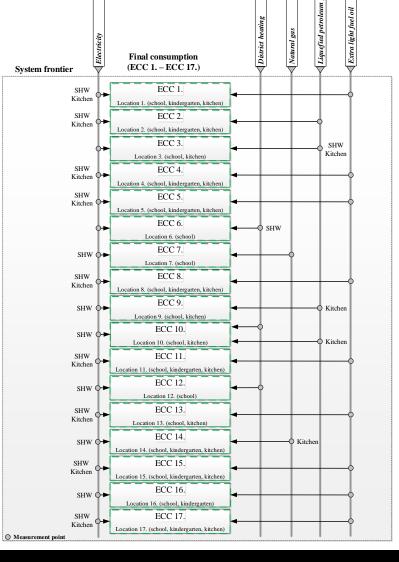
Analysis of available data - monitoring and targeting (1/4)


Analysis of available data - monitoring and targeting (2/4)

TIMEPA Academy

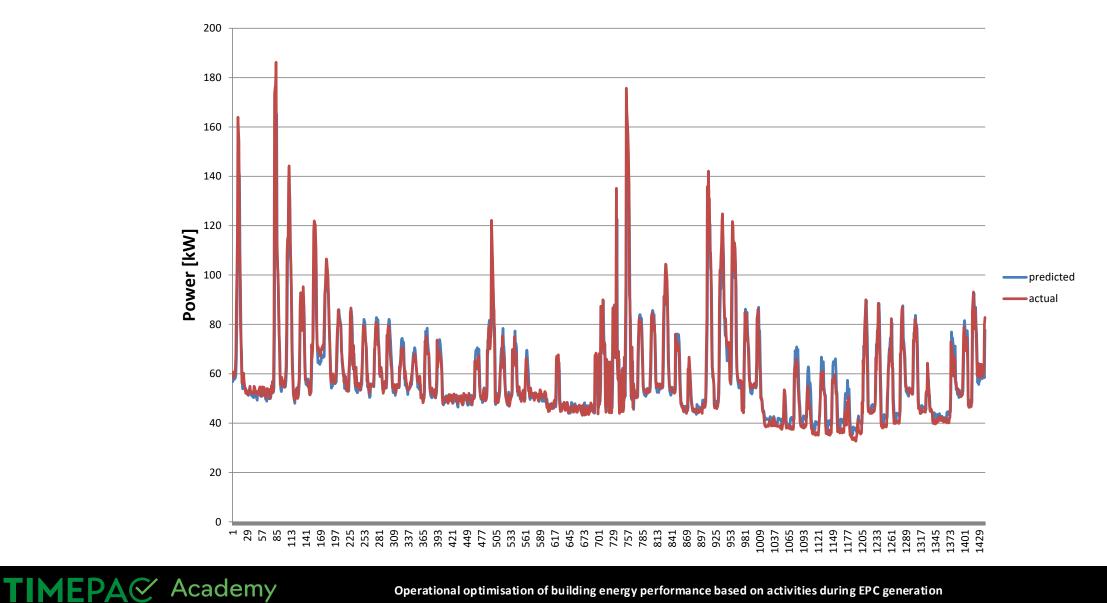
Analysis of available data - monitoring and targeting (3/4)

• Use of additional indicators

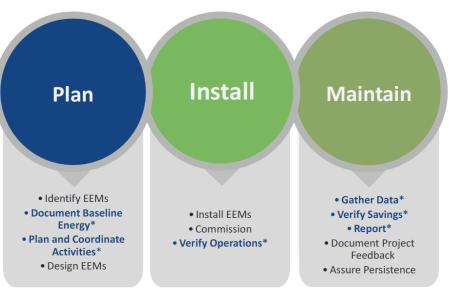

TIMEPA Academy

Analysis of available data - monitoring and targeting (4/4)

- ECC based modelling and DEA (data envelopment analysis) can be combined for the assessment of the energy performance of different buildings belonging to educational sector
- Decision support for energy manager!


TIMEPA Academy

 Point of interest electricity consumption!



-			
	CRS model	VRS model	Comparable ECCs according to VRS model and corresponding $\boldsymbol{\lambda}$ weight
ECC 1	0,557	1,000	ECC 1 is on the VRS efficiency frontier (peer)
ECC 2	0,789	0,913	ECC 13 (λ = 0,642) and ECC 4 (λ = 0,358)
ECC 3	0,870	0,872	ECC 4 (λ = 0,954) and ECC 6 (λ = 0,046)
ECC 4	1,000	1,000	ECC 4 is the most efficient ECC, placed on both CRS and VRS efficiency frontier (peer)
ECC 5	0,484	0,497	ECC 4 (λ = 0,809) and ECC 13 (λ = 0,191)
ECC 6	0,985	1,000	ECC 6 is on the VRS efficiency frontier (peer)
ECC 7	0,722	0,747	ECC 4 (λ = 0,774) and ECC 13 (λ = 0,226)
ECC 8	0,676	0,677	ECC 4 (λ = 0,985) and ECC 13 (λ = 0,015)
ECC 9	0,769	0,780	ECC 6 (λ = 0,939) and ECC 4 (λ = 0,061)
ECC 10	0,743	1,000	ECC 10 is on the VRS efficiency frontier
ECC 11	0,509	0,515	ECC 4 (λ = 0,651) and ECC 6 (λ = 0,349)
ECC 12	0,386	0,525	ECC 13 (λ = 0,703), ECC 4 (λ = 0,154) and ECC 16 (λ = 0,142)
ECC 13	0,673	1,000	ECC 13 is on the VRS efficiency frontier (peer)
ECC 14	0,937	1,000	ECC 14 is on the VRS efficiency frontier (peer)
ECC 15	0,722	0,909	ECC 16 (λ = 0,643), ECC 13 (λ = 0,273) and ECC 4 (λ = 0,084)
ECC 16	0,815	1,000	ECC 16 is on the VRS efficiency frontier (peer)
ECC 17	0,788	0,800	ECC 6 (λ = 0,920) and ECC 4 (λ = 0,080)
Mean	0,731	0,837	-

Exercise – analysis and prediction of electricity consumption

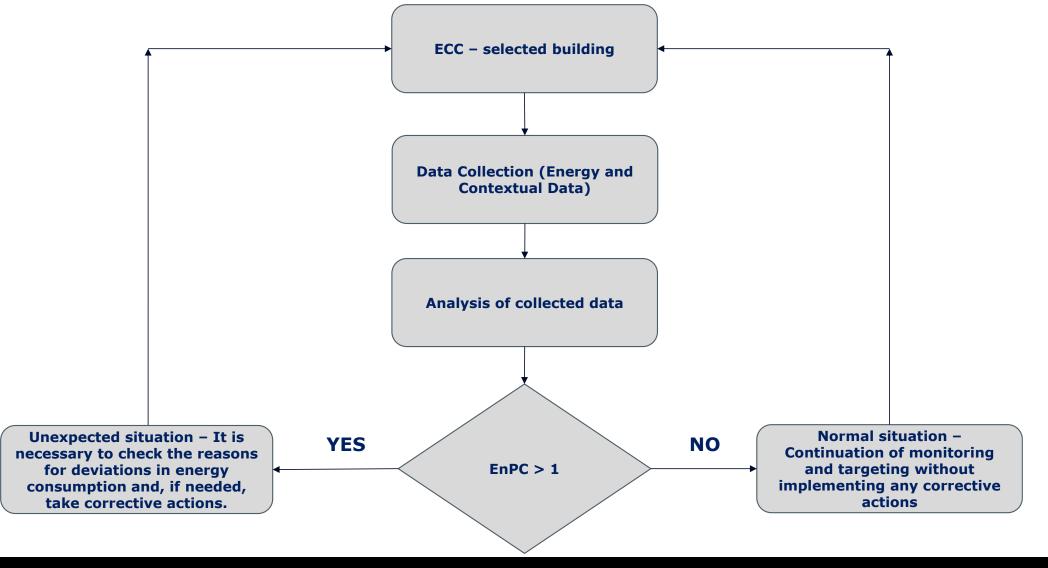
Key elements of measurement and verification of saving (1/4)

TIMEPA Academy

Step 1: Determine Goals for M&V Efforts	
Step 2: Select IPMVP Option(s) and Approaches	
Step 3: Document Baseline Data	Baseline Period
Step 4: Develop M&V Plan	
Step 5: Set-up Metering and Ongoing Data Collection Processes	
Step 6: Monitor for Changes in Site Conditions	
Step 7: Confirm Operational Verification	Installation Period
Step 8: Ongoing Data Collection	
Step 9: Determine Savings for Period	Reporting Period
Step 10: M&V Report for Period	
Step 11: Track Energy Performance and Savings	

*M&V Activities

Type of Savings	Basis of Adjustment	Routine Adjustment Method	Description	
Avoided Energy Consumption	Reporting Period Conditions	Forecasting	Baseline period energy is adjusted to reporting period conditions	
	Baseline Period Conditions	Backcasting	Reporting period energy is adjusted to baseline period conditions	
Normalized Energy Savings	"Normal" or Fixed Conditions	Normalizing	Both the baseline and reporting period energy are adjusted to standard conditions, e.g., Typical Meteorological Year (TMY) conditions	

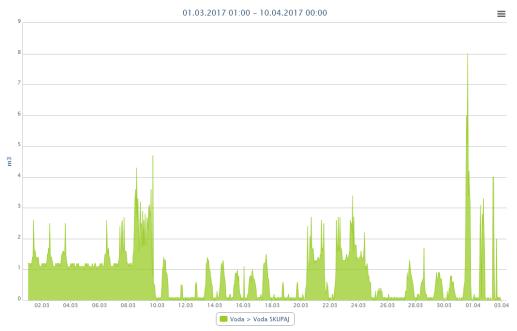

Key elements of measurement and verification of saving (2/4)

IPMVP Option	Definition	How Savings are Calculated	Typical Applications
A. Retrofit Isolation: Key Parameter(s) Measurement	Savings are determined by field measurement of the key parameter(s), which define the energy consumption and/or demand of the EEM's affected system(s). Performance indicators may also be defined and measured to ensure the success of the project. Measurements range from periodic short-term to continuous long-term, depending on the expected variations in the key parameter(s). Parameters not selected for field measurements are estimated values. Estimates can be based on historical data, manufacturer specifications, or engineering judgment. Documentation of the source and justification of the estimated value is required. The plausible savings error arising from estimation rather than measurement is evaluated and is acceptable to stakeholders.	Calculation of baseline period energy and reporting period energy from periodic short-term energy measurements, or from periodic short- term or continuous measurements of key parameter(s) and from estimated values. Routine and non-routine adjustments as required. Key parameter(s) must be measured during both baseline and reporting period.	A lighting retrofit where the change in power drawn by the lighting system is the most uncertain parameter and is measured, and secondly, lighting operating hours are estimated based on facility schedules and occupant behavior. Notes: Multiple key parameters often exist, and selection of key parameters to measure is an important consideration.
B. Retrofit Isolation: All Parameter Measurement	Savings are determined by continuous field measurement of the energy consumption and/or demand or validated proxy variables and the related independent variables of the EEM affected system. Measurements range from periodic short-term to continuous long-term, depending on the expected variations in the key parameters.	Determination of baseline period energy based on short-term or continuous measurements of baseline and reporting period energy, or on engineering computations using measurements of proven proxies of energy consumption or demand. Routine and non-routine adjustments as required.	Installation of a variable-frequency drive and controls to a motor to adjust pump flow. Measure electric power with a kW meter installed on the electrical supply to the motor, which reads the power demand every minute. In the baseline period, this meter is in place for a month and system testing was conducted to verify constant loading across a full range of operating conditions. The meter remains in place throughout the reporting period to measure energy consumption and demand.

Key elements of measurement and verification of saving (3/4)

IPMVP Option	Definition	How Savings are Calculated	Typical Applications
C. Whole Facility	Savings are determined by measuring energy consumption and/or demand at the whole facility or sub- facility level, often using utility meter data. Continuous measurements of the entire facility's or sub- facility's energy consumption and/or demand are taken throughout the baseline period and the reporting period.	Analysis of the whole facility or sub- facility baseline and reporting period energy data (e.g., utility meter) and independent variables. Routine adjustments as required, typically using models based on regression analysis techniques. Non-routine adjustments as required.	Multifaceted energy management programs affecting many systems in a facility. Measure energy consumption and/or demand with the gas and electric utility meters for a twelve-month baseline period and throughout the reporting period.
D. Calibrated Simulation	Savings are determined through simulation of the energy consumption and demand of the whole facility, or of a sub-system in the facility and comparing results with actual energy consumption and demand. Simulation models are demonstrated to adequately model actual energy performance in the facility. This option requires considerable skill in calibrated simulation and experience with the equipment and processes being modeled.	Actual energy consumption and demand and results from simulation model(s). Energy consumption and demand from the simulation, calibrated with hourly, daily or monthly energy data. Energy sub-metering and metered performance data including processes may be used in further model calibration. Non-routine adjustments as required.	Multifaceted energy management programs affecting many systems in a facility but where no meter existed in the baseline period. Energy consumption and demand measurement, after installation of natural gas, electric or other energy meters, is used to calibrate a simulation model.

Key elements of measurement and verification of saving (4/4)


TIMEPA Academy

Conclusion

- Be demanding in the implementation of energy efficiency measures and demand sustainable solutions!
- Knowledge and a good understanding of on-site processes are crucial for the successful implementation of new solutions a cyclical process of improvements!

Academy

If you would like more information, please visit www.timepac.eu or contact us at

boris.sucic@ijs.si

Thanks for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101033819

Follow us on Twitter and LinkedIn: @timepac