TIMEPAC Academy

Session 3

Data extraction from the multiple sources

Presenter: Álvaro Sicilia (La Salle-URL)

29 February 2024

Data extraction from the multiple sources

Data extraction from the multiple sources

Handling data issues: Outliers

Data inconsistency:

- An outlier is a data point that falls at an abnormal distance from the other values.
- Outliers can indicate potential errors, anomalies, or irregularities.
- Problems with the equipment (i.e., sensors)
- Energy simulation tools may be sensitive to outliers leading to bad simulations.

Handling data issues: Outliers

Inter Quartile Range (IQR) method

Handling data issues: Outliers

Inter Quartile Range (IQR) method

Handling data issues: Outliers

Inter Quartile Range (IQR) method

Practical example

Indoor Environmental Quality calculation (with Excel)

	A	B	C	D	E	F	G	H
	Date/Time			Boundar	conditions	Comfort temperatures		
2	Month	Day	Hour	Ext. air temp. $\boldsymbol{\theta}_{\text {ext }}$	Running mean out. temp. $\boldsymbol{\theta}_{r m}$	Comfort temp. $\boldsymbol{\theta}_{\mathrm{c}}$	Upper limit temp. $\boldsymbol{\theta}_{\mathrm{c} \text {.upper }}$	Lower limit temp. $\boldsymbol{\theta}_{\text {c.lower }}$
3				[${ }^{\text {C }}$]				
5	1	1	0	8.1	10,7	22,3	26,3	17,3
6	1	1	1	7.5	10,7	22,3	26,3	17,3
7	1	1	2	1,0	10,7	22,3	26,3	17,3
8	1	1	3	6,9	10,7	22,3	26,3	17,3
9	1	1	4	6,7	10,7	22,3	26,3	17,3
10	1	1	5	6,2	10,7	22,3	26,3	17,3
11	1	1	6	5,6	10,7	22,3	26,3	17,3
12	1	1	7	23,0	10,7	22,3	26,3	17,3
13	1	1	8	5.7	10,7	22,3	26,3	17,3
14	1	1	9	7,1	10,7	22,3	26,3	17,3
15	1	1	10	8,5	10,7	22,3	26,3	17,3
16	1	1	11	11,0	10,7	22,3	26,3	17,3
17	1	1	12	11,7	10,7	22,3	26,3	17,3
18	1	1	13	12,6	10,7	22,3	26,3	17,3
19	1	1	14	12,0	10,7	22,3	26,3	17,3
20	1	1	15	11,6	10,7	22,3	26,3	17,3
21	1	1	16	11,2	10,7	22,3	26,3	17,3
22	1	1	17	10,7	10,7	22,3	26,3	17,3
23	1	1	18	10,5	10,7	22,3	26,3	17,3
24	1	1	19	10,4	10,7	22,3	26,3	17,3
25	1	1	20	10,2	10,7	22,3	26,3	17,3
26	1	1	21	9,6	10,7	22,3	26,3	17,3
27	1	1	22	9,0	10,7	22,3	26,3	17,3
28	1	1	23	8,5	10,7	22,3	26,3	17,3
29	1	2	0	8.0	10,1	22,1	26,1	17,1
30	1	2	1	7,2	10,1	22,1	26,1	17,1
31	1	2	2	6,7	10,1	22,1	26,1	17,1

Practical example

$$
\begin{aligned}
& =\text { QUARTILE(D5:D168, 2) } \\
& =\text { //median } \\
& =\text { UURTILE(D5:D168, 3) }
\end{aligned}
$$

Indoor Environmental Quality calculation (with Excel) $=$ QUARTILE(D5:D168, 1) //Q1
=QUARTILE(D5:D168, 3) - QUARTILE(D5:D168, 1) // IQR

Handling data issues: missing points

Incomplete datasets:

- Incomplete datasets may arise due to gaps in utility records or limitations in monitoring systems
- Missing information can impact the accuracy of EPCs

Handling data issues: missing points

1. Fill with Average/Mean

2. Fill with Previous/Next Value:

Handling data issues: missing points

Indoor Environmental Quality calculation (with Excel)

Take aways

The new EPBD will require to work with more datasets.

Do not take for granted the accuracy and reliability of data wherever it comes from!

Validate and fix the data you are using for your EPC generation.

TIMEPAE

If you would like more information, please visit www.timepac.eu or contact us at alvaro.sicilia@salle.url.edu

Thanks for your attention!

