

Identification of cost-optimal investments and creation of renovation scenarios

IOSIFINA PETRI

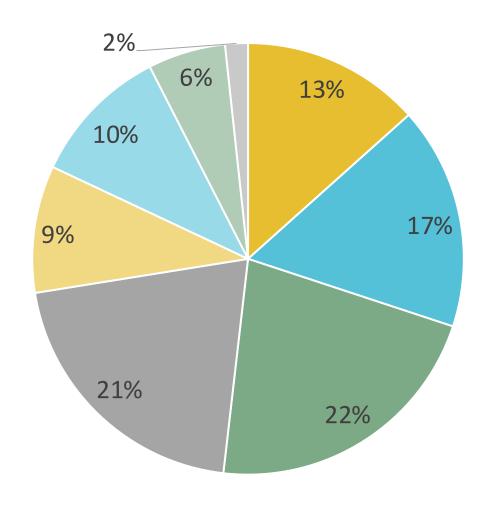
Civil Engineer | Cyprus Energy Agency

23 September 2024

40% of energy is consumed by buildings

36% of greenhouse gas emissions is due to buildings

50% of raw materials is consumed in buildings


40% of waste is due to buildings

Cyprus Building Stock

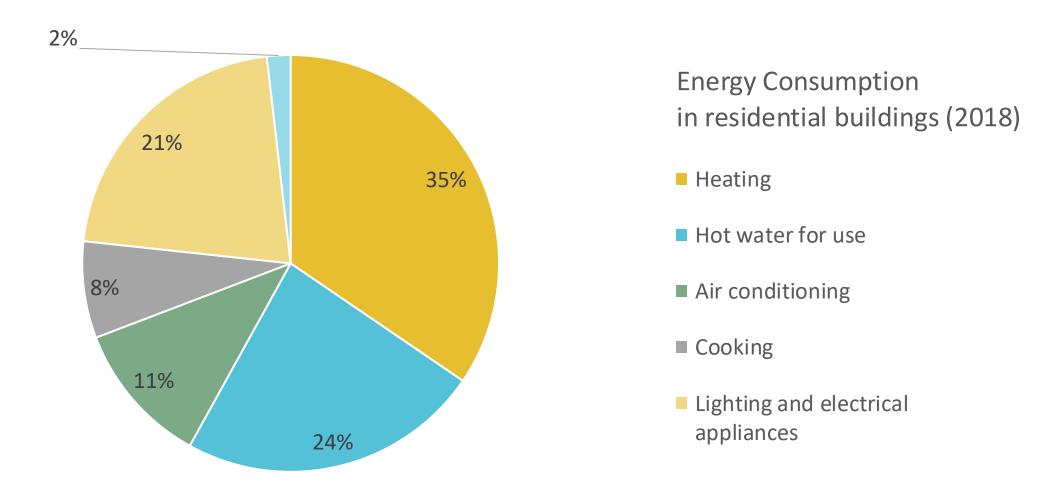
- The characteristics of an area's building stock are directly linked to parameters such as the *local climate, culture, available construction materials, existing legal framework, minimum requirements for the energy performance of buildings, know-how and skills* of the human resources involved with the construction sector.
- Nationally, over the past 100 years the building stock has changed, evolved and adapted to a range of measures, trends and necessities of each era.
- Transition from traditional construction with mainly natural materials to reinforced concrete buildings.
- In the recent past, minimum energy efficiency requirements have been adopted.
- The buildings of Cyprus are characterized by great diversity.

The building stock of Cyprus

Year of construction

- Πριν το 1974
- **1974-1983**
- **1984-1993**
- **1994-2003**
- 2004-2006
- 2007-2009
- **2010-2012**
- 2013 και μετά

A large percentage of residential buildings is built before 2007, which translates to:


- Outdated solar systems for hot water
- Single-glazed windows
- Most of them do not have roof insulation and if they do, it is usually damaged

Methods for heating:

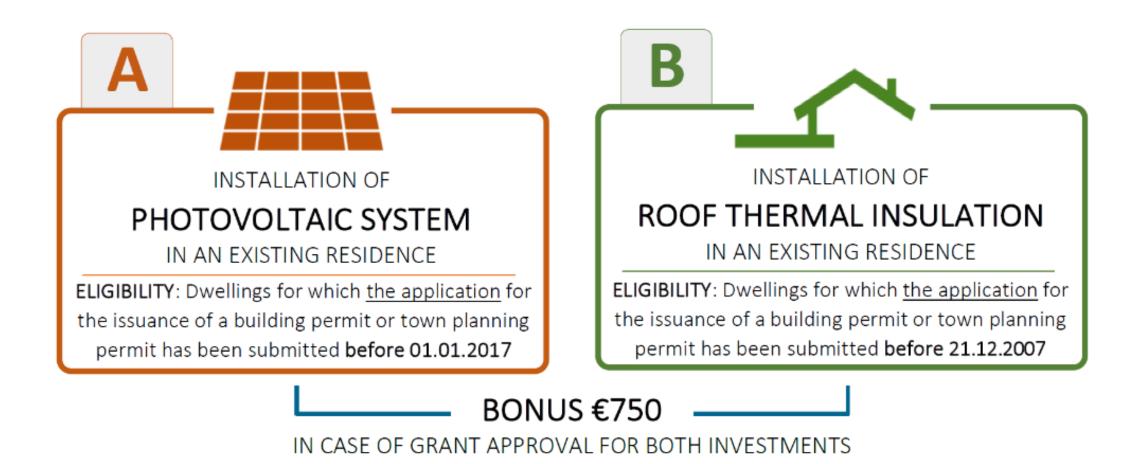
- Boilers (oil) for central heating
- Traditional fireplaces
- Gas heaters
- Oil heaters
- Electric heaters

The building stock of Cyprus – Residential Buildings

Energy upgrade targets

- Energy saving targets >30%
- Energy class B+ (commercial & public buildings) or
- Energy class A (residential buildings) (nZEB)

Improvement measures in performance


- Thermal insulation of the building envelope (roofs, walls etc)
- Highly efficient external windows and doors
- External shading
- Smart meters
- Thermal plaster

Academy

- Heating and air conditioning systems
 - High efficiency energy stoves

What is the government promoting?

Grant Scheme "Saving - Upgrading of Residential Buildings" - 2023

TYPES OF INVESTMENTS:

- CATEGORY A: INTEGRATED ENERGY UPGRADING OF RESIDENCES INTO BUILDINGS WITH NEARLY ZERO ENERGY CONSUMPTION (nZEB)
- CATEGORY B: ENERGY UPGRADING OF RESIDENCES IN COMBINATION WITH INSTALLATION OF PHOTOVOLTAIC SYSTEMS (NET-BILLING)
- CATEGORY C: ENERGY UPGRADING OF RESIDENCES

MAXIMUM GRANT AMOUNT PER TYPE OF INVESTMENT:

• **CATEGORY A:** Up to € 32,000

• **CATEGORY B:** Up to € 27,000

• **CATEGORY C:** Up to € 22,000

NOTE: For all types of investments, the amount of the sponsorship is determined by a simplified cost procedure, depending on the investments implemented

PEDIA Project – Cyprus

"An innovation project exclusively for the schools of Cyprus. A project of total building upgrade for quality education. A project for sustainability and the school environment."

Promoting Energy efficiency & Developing Innovative Approaches in schools

Project objectives :

Energy renovations of 25 schools across Cyprus in order to reach the nZEB level.

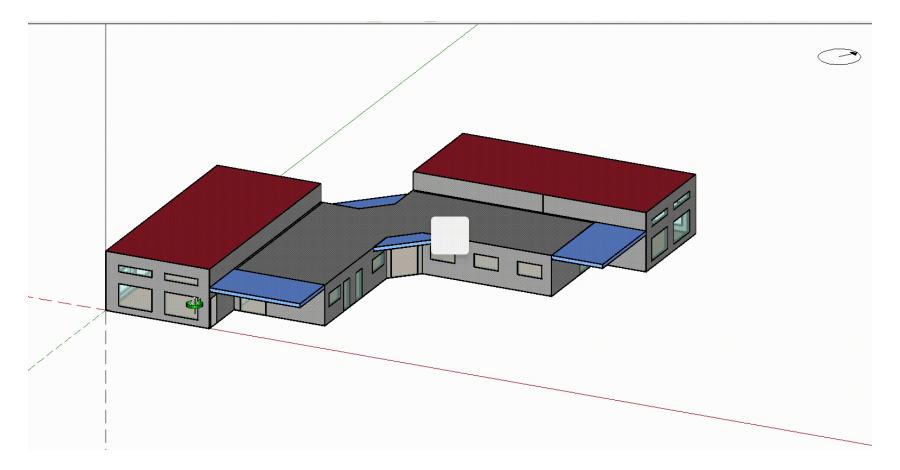
SUGGESTED ENERGY UPGRADE MEASURES

TO TRANSFORM SCHOOL BUILDINGS INTO nZEBs:

- Thermal Insulation of the Building Envelope
- Thermal Insulation and Waterproofing of Flat Roofs
- Thermal Insulation Inside of False Ceilings (for Sloped Roofs)
- Replacement of Existing Openings (new heat-insulating windows and doors)
- Replacement of Existing Lighting with new LED lighting
- Replacement of Existing Ventilators
- Repair and Maintenance of Existing Shading Elements
- Green Roofs
- Planting of Trees for Natural Shading

ENERGY RENOVATIONS OF SCHOOLS

Agios Dometios , Nicosia Gymnasium


BEFORE

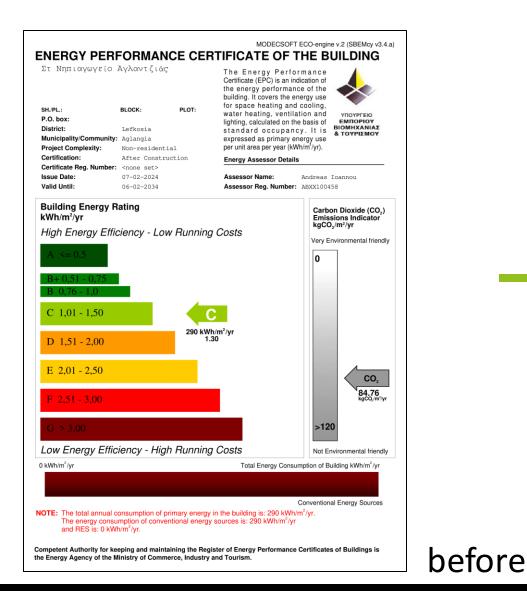
Academy

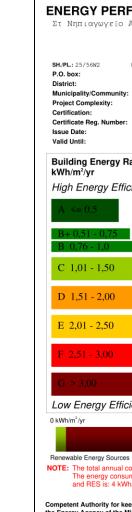
When the Scope of the Energy Upgrade is not JUST economic viability but also:

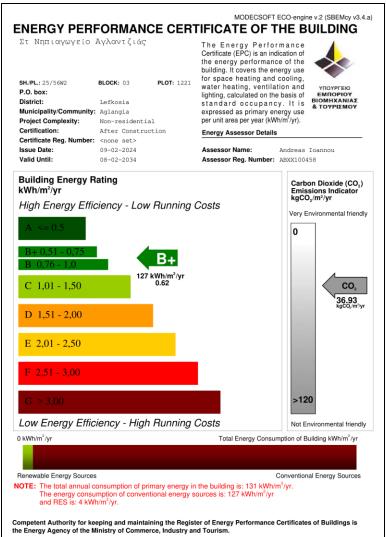
- Compliance with Legislation
- Achievement of Thermal Comfort
- Environmental Aspects (emission reduction e.g. CO2, SOx, NOx)
- Indoor Air Quality
- Pilot for Optimising Contracting Procedures and increasing replicability
- Smart Readiness
- Others

A Nearly Zero Energy Building (nZEB) as determined by legislation in Cyprus, is a building that has a total energy consumption of 100kwh/m2/yr or lower, while this energy demand is covered by at least 25% by RES.

PEDIA Project:


No economic sense BUT...


Σ.	Technical Criterion – Energy Upgrade Measure	Energy Savings	Primary Energy Savings	CO2 Emissions Reduction (kg·CO ₂ /a)	Differential Net Present Value [NPV,diff]	Capital Cost ²
۷.	Technical Citterion – Lifergy Opgrade Measure	(kWh _{el/th} /a)	(KWh _{pr} /a)		(€)	(€)
1	Lighting Replacement	3946	10,654	8,459	+9039,10	3,910
2	Room Thermal Insulation	7,040	8,575	2,964	-9,129	14,600
3	Façade Thermal Insulation	4,298	5,345.4	1,937	-9,409	15,040
4	Openings Replacement	7,470	8,786.7	2,782	-41,262	43,475
	nZEB	20,879	33.861	18,590	-51,407	77,025


PEDIA Project:

No economic sense BUT Quality Goals and Other Goals were the Scope and need...

Σ.	Goal	Qualitative Criterion	Benefit	Significance	Achievement Degree
1	Compliance with the National Legislation	Energy upgrade to class B+ or better for any public building undergoing large-scale renovation (ΚΔΠ 121/2020)	Compliance with legislation and the public school being a good example to promote	Highly important	Achieved
2	Thermal comfort satisfaction in the summer period	Satisfying comfort conditions on 90% of the hottest days when schools are in operation without the need to install and use air conditioners	Achievement of comfort conditions	Highly important	Achieved
3	Improving thermal comfort during the winter period	Improved comfort conditions with reduced energy requirements	Achievement of comfort conditions	Highly important	Achieved
4	Reducing carbon emissions and contributing to the achievement of the National Energy and Climate Action Plan	Emission Reduction	Improving air quality with all that entails and contributing to the relevant national objectives.	Very Important	Achieved
5	Improving employment opportunities in the construction sector	Creation of Jobs		Less Important	Achieved
6	Successful pilot application to set energy upgrade standards for existing school buildings	Possibility of replicability of energy upgrades in other schools	Immediacy and Readiness of large-scale energy upgrades with reduced preprocessing .	Very Important	Achieved
7	Reduction of primary energy consumption based on the EPC	By 163 kWh/m2/year which translated to 56%.	Reduced operating costs, increased thermal comfort and contribution to national targets.	Very Important	Achieved

The first 5 schools – before & after (Energy Upgrades 2023)

SCHOOL	YEAR OF BUILD	SIZE m?	Initial Energy Needs (KWh/m [®] .year)	New Energy Needs (KWh/m②.year)	Energy savings	Savings in CO ₂ emissions	Energy Class - BEFORE	New Energy class
Agios Dometios High School	1969	3248	154	58	62 %	62 %	С	Α
6th Kindergarten of Aglantzia	2009	569	290	127	56 %	56 %	С	B+
Agios Antonios Kindergarten	1961	437	299	53	82 %	84 %	D	Α
Agioi Trimithia Primary School	1956	1505	282	81	71 %	71 %	D	Α
2nd Primary School of Idaliou	1969	2156	136	43	68 %	68 %	D	Α

Results:

- Solve critical problems and address challenges with new intervention design patterns for energy upgrades.
- Development of the long-term strategy of the Ministry of Education by adopting holistic approaches that have been documented through technical assistance and experience from the pilot applications.
- Promotion of the Public School as a model example of good practice in Cyprus and Europe.

Results from the energy upgrades of 25 homes of vulnerable population groups in Cyprus

		PV	ΚΟΣΤΟΣ	п	ІЕА ПРІМ	ПЕ	A META	EEE	АПЕ	PP		PV	κοετοε	- 1	ПЕА ПРІМ	ΠE	A META	Nh./ % year	АПЕ
PP	ΕΠΕΜΒΑΣΕΙΣ	kW	€	Class	kWh _{er} / m².year	Class	kWh _{ec} / m².year	%	%	PP	ΕΠΕΜΒΑΣΕΙΣ		€	Class	kWh _{er} / m².year	Class	kWh _{er} / m².year	%	%
1		1.2	9300	G	746	С	241.12	68%	16	10		3	9955	G	611	В	99	84%	48%
2			7635	G	713	D	438	39%	1	11			8069	E	439	С	280	36%	2%
3		1.5	7494	G	1069	F	517	52%	8	12			7950	G	841	С	284	66%	2%
4			11250		778		200	500/	25	13			10780	F	506	D	288	43%	2%
4		3	11250	G	//8	D	389	50%	25	14			8603	G	747	Е	373	50%	2%
5		1	6910	G	647	С	207	68%	19%	15			9000	G	1175	D	395	66%	1%
6		1	6230	G	914	Е	491	46%	9%	16			8585	F	598	D	351	41%	2%
7		3	8447	E	330	A	137	59%	32%	17			8136	G	626	D	306	51%	2%
8		3	7500	D	334	В	79	76%	55%	18		3	7880	С	306	А	12	96%	92%
9		1	7730	G	871	D	428	51%	19%	19			8575	F	555	D	405	27%	1%

					9 4			_	
		PV	ΚΟΣΤΟΣ	n	EA NPIN	NE	A META	EEE	АПЕ
PP	ΕΠΕΜΒΑΣΕΙΣ	kW	€	Class	kWh _{er} / m².year	Class	kWh _{pr} / m².year	%	%
20		1.4	7870	G	852	D	341	60%	14%
21			8476	G	771	ε	499	35%	1%
22		3.6	9437	D	347	A	83	76%	61%
23		1.9	9325	G	950	С	247	74%	21%
24			7100	G	651	E	338	48%	1%
25	No.	B 9	7000	G	649	Ŧ	590.64	9%	1%

Promoting Energy Efficiency & Developing Innovative Approaches in Schools

If you would like more information, please visit www.timepac.eu or contact us at

Iosifina.petri@cea.org.cy

Thanks for your attention!

