

Towards Innovative Methods for Energy Performance Assessment and Certification of Buildings

Archetypes of building stock in Spain (Catalonia)

This document is an excerpt of the *Deliverable 2.5 - Procedures and services to undertake large-scale statistical analysis of EPCs databases* (Ballarini, I., Piro, M. & P.Tootkaboni, M., 2023). <u>https://timepac.eu/reports/procedures-and-services-to-undertake-large-scale-statistical-analysis-of-epcs-databases/</u>

Date: 29.09.2023

www.timepac.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

Archetypes definition for Spain (Catalonia)

Table 1. Construction period ranges (Catalan Region)

CP1	CP2	СРЗ	CP4	CP5	CP6
≤ 1900	1901-1936	1937-1960	1961-1980	1981-2006	> 2007

Table 2. Building use categories considered (Catalan region)

Intended use	Bldg type	Description
Residential	SFH	Single-family houses
	AB	Building units in multi-family houses or apartment blocks
Non-residential	TRY	Tertiary buildings such as offices, hospitals, hotels,

Table 3. Building typology matrix (Catalan region)

		CP1	CP2	CP3	CP4	CP5	CP6
		≤ 1900	1901-1936	1937-1960	1961-1980	1981-2006	> 2007
B3	AB				B3_RES_AB_CP4	B3_RES_AB_CP5	
	AB	C2_RES_AB_CP1	C2_RES_AB_CP2	C2_RES_AB_CP3	C2_RES_AB_CP4	C2_RES_AB_CP5	C2_RES_AB_CP6
C2	SFH			C2_RES_SFH_CP3	C2_RES_SFH_CP4	C2_RES_SFH_CP5	C2_RES_SFH_CP6
	TRY			C2_TRY_CP3	C2_TRY_CP4	C2_TRY_CP5	
C3	AB				C3_RES_AB_CP4	C3_RES_AB_CP5	
CS	SFH					C3_RES_SFH_CP5	
D2	AB				D2_RES_AB_CP4	D2_RES_AB_CP5	
D3	AB				D3_RES_AB_CP4		

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

Archetypes of building stock in Spain (Catalonia)

Table 4. Archetype - residential building (AB), climatic zone B3 (Catalonia Region), constructionperiod 1961-1980

	CATALAN EPC DA	TABASE - B3	B_RES_AB_CP	4		
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$
	Compactness ratio	CR	m ⁻¹	2,980	1,280	1,390
try	Thermally heated gross volume	V _{H;g}	m ³	180	60	58
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	70	23	22
Ge	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	20	10	4
lope	Mean thermal transmittance of opaque building envelope	U _{op}	W∕(m²⋅K)	1,470	0,360	0,220
Envelope	Mean thermal transmittance of transparent building envelope	U _{wi}	W∕(m²⋅K)	4,890	0,550	1,090
	Energy carrier per space heating		Natural gas	= 74%, Elec	ctricity = 24%	,)
'sten	Energy carrier per space cooling		Ele	ctricity = 1	00%	
ng sy	Energy carrier per domestic hot water		Natural gas :	= 42%, Elec	tricity = 51%	,)
Technical building system	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	—	0,820	0,520	0,160
chnical	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-
Te	Utilisation energy efficiency	$\eta_{ m H;u}$	_	-	-	-
	Energy need for space heating	<i>EP</i> H;nd;ztc	kWh/m ²	55,7	19,0	15,5
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	16,0	3,6	3,2
	Energy need for domestic hot water	EPw;nd;ztc	kWh/m ²	61,4	50,6	17,8
	Seasonal space heating energy efficiency	$\eta_{ m s;H}$	—	-	-	-
	Seasonal space cooling energy efficiency	$\eta_{\rm s;c}$	_	-	-	-
cators	Seasonal domestic hot water energy efficiency	$\eta_{ m s;W}$	_	-	-	-
Energy indi	Non-renewable energy performance per space heating	<i>EP</i> _{H;nren}	kWh/m ²	75,4	27,7	22,0
Ener	Non-renewable energy performance per space cooling	EP _{C;nren}	kWh/m ²	-	-	-
	Non-renewable energy performance per domestic hot water	EP _{W;nren}	kWh/m ²	-	-	-
	Overall non-renewable energy performance	<i>EP</i> gl;nren	kWh/m ²	147,9	43,6	33,8
	Overall renewable energy performance	EP _{gl;ren}	kWh/m ²	-	-	-

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

Renewable Energy Ratio	RER	%	-	-	-

Table 5. Archetype - residential building (AB), climatic zone B3 (Catalonia Region), constructionperiod 1981-2006

	CATALAN EPC DA	TABASE - B3	RES_AB_CP	5		
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$
	Compactness ratio	CR	m ⁻¹	2,910	1,880	1,310
try	Thermally heated gross volume	V _{H;g}	m ³	176	48	49
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	69	19	19
g	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	18	5	3
Envelope	Mean thermal transmittance of opaque building envelope	U _{op}	W/(m²⋅K)	0,970	0,390	0,460
Enve	Mean thermal transmittance of transparent building envelope	U _{wi}	W/(m²⋅K)	3,780	0,820	0,120
E	Energy carrier per space heating		Natural gas =	= 55%, Elec	tricity = 43%)
/ster	Energy carrier per space cooling		Eleo	ctricity = 1	00%	
ng sy	Energy carrier per domestic hot water		Natural gas =	= 39%, Elec	tricity = 58%	
Technical building system	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	1,000	0,470	0,280
chnica	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-
Te	Utilisation energy efficiency	$\eta_{ m H;u}$	_	-	-	-
	Energy need for space heating	EPH;nd;ztc	kWh/m ²	46,4	19,9	14,8
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	13,7	3,3	3,1
	Energy need for domestic hot water	<i>EP</i> w;nd;ztc	kWh/m ²	58,9	47,5	17,4
	Seasonal space heating energy efficiency	$\eta_{ m s;H}$	-	-	-	-
	Seasonal space cooling energy efficiency	$\eta_{ m s;C}$	-	-	-	-
itors	Seasonal domestic hot water energy efficiency	$\eta_{ m s;W}$	_	-	-	-
Energy indicators	Non-renewable energy performance per space heating	<i>EP</i> _{H;nren}	kWh/m ²	64,4	28,8	22,1
Energy	Non-renewable energy performance per space cooling	EP _{C;nren}	kWh/m ²	-	-	-
	Non-renewable energy performance per domestic hot water	EP _{W;nren}	kWh/m ²	-	-	-
	Overall non-renewable energy performance	EP gl;nren	kWh/m ²	136,4	43,0	33,3
	Overall renewable energy performance	EP gl;ren	kWh/m ²	-	-	-
	Renewable Energy Ratio	RER	%	-	-	-

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

Table 6. Archetype - residential building (AB), climatic zone C2 (Catalonia Region), construction period \leq 1900

	CATALAN EPC DA	TABASE - C2	2_RES_AB_CF	21		
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$
	Compactness ratio	CR	m ⁻¹	3,100	1,610	1,290
try	Thermally heated gross volume	V _{H;g}	m ³	206	170	71
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	72	56	24
Ge	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	17	6	5
lope	Mean thermal transmittance of opaque building envelope	U _{op}	W∕(m²⋅K)	1,610	0,280	0,240
Envelope	Mean thermal transmittance of transparent building envelope	U _{wi}	W∕(m²⋅K)	4,450	0,550	0,670
_	Energy carrier per space heating		Natural gas	= 69%, Elec	ctricity = 29%	,
/sten	Energy carrier per space cooling		Ele	ctricity = 1	00%	
ng sy	Energy carrier per domestic hot water		Natural gas	= 55%, Elec	tricity = 40%	,
Technical building system	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	0,870	0,450	0,150
chnical	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-
Te	Utilisation energy efficiency	$\eta_{\mathrm{H;u}}$	-	-	-	-
	Energy need for space heating	EP _{H;nd;ztc}	kWh/m ²	87,6	25,7	22,0
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	5,1	2,2	1,8
	Energy need for domestic hot water	EP _{W;nd;ztc}	kWh/m ²	75,6	36,4	33,6
	Seasonal space heating energy efficiency	$\eta_{\mathrm{s;H}}$	_	-	-	-
	Seasonal space cooling energy efficiency	η _{s;c}	_	-	-	-
tors	Seasonal domestic hot water energy efficiency	$\eta_{ m s;W}$	_	-	-	-
Energy indicators	Non-renewable energy performance per space heating	<i>EP</i> _{H;nren}	kWh/m ²	120,3	37,9	32,5
Energy	Non-renewable energy performance per space cooling	<i>EP</i> _{C;nren}	kWh/m ²	-	-	-
	Non-renewable energy performance per domestic hot water	EP _{W;nren}	kWh/m ²	-	-	-
	Overall non-renewable energy performance	<i>EP</i> gl;nren	kWh/m ²	176,4	53,6	38,4
	Overall renewable energy performance	EP _{gl;ren}	kWh/m ²	-	-	-
	Renewable Energy Ratio	RER	%	-	-	-

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

Table 7. Archetype - residential building (AB), climatic zone C2 (Catalonia Region), constructionperiod 1901-1936

	CATALAN EPC DA	TABASE - C2	2_RES_AB_CF	2		
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$
	Compactness ratio	CR	m ⁻¹	2,850	1,300	1,070
try	Thermally heated gross volume	V _{H;g}	m ³	201	196	66
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	70	63	22
Ge	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	18	6	4
lope	Mean thermal transmittance of opaque building envelope	U _{op}	W∕(m²⋅K)	1,660	0,230	0,240
Envelope	Mean thermal transmittance of transparent building envelope	U _{wi}	W∕(m²⋅K)	4,520	0,480	0,740
c	Energy carrier per space heating		Natural gas	= 73%, Elec	ctricity = 27%	,)
/sten	Energy carrier per space cooling		Ele	ctricity = 1	00%	
ng s)	Energy carrier per domestic hot water		Natural gas	= 67%, Elec	ctricity = 29%	/)
Technical building system	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	0,780	0,540	0,060
chnica	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-
Те	Utilisation energy efficiency	$\eta_{\mathrm{H;u}}$	—	-	-	-
	Energy need for space heating	EP _{H;nd;ztc}	kWh/m ²	94,1	26,3	21,3
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	5,4	2,1	1,7
	Energy need for domestic hot water	<i>EP</i> _{W;nd;ztc}	kWh/m ²	80,0	35,0	38,0
	Seasonal space heating energy efficiency	$\eta_{ m s;H}$	—	-	-	-
	Seasonal space cooling energy efficiency	$\eta_{ m s;C}$	_	-	-	-
itors	Seasonal domestic hot water energy efficiency	$\eta_{ m s;W}$	_	-	-	-
Energy indicators	Non-renewable energy performance per space heating	EP _{H;nren}	kWh/m ²	130,8	40,0	32,1
Energy	Non-renewable energy performance per space cooling	EP _{C;nren}	kWh/m ²	-	-	-
	Non-renewable energy performance per domestic hot water	EP _{W;nren}	kWh/m ²	-	-	-
	Overall non-renewable energy performance	EP gl;nren	kWh/m ²	187,9	50,2	40,1
	Overall renewable energy performance	EP _{gl;ren}	kWh/m ²	-	-	-
	Renewable Energy Ratio	RER	%	-	-	-

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

Table 8. Archetype - residential building (AB), climatic zone C2 (Catalonia Region), constructionperiod 1937-1960

	CATALAN EPC DA	TABASE - C2	2_RES_AB_CF	3		
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$
	Compactness ratio	CR	m ⁻¹	2,930	1,310	1,180
try	Thermally heated gross volume	V _{H;g}	m ³	202	132	52
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	73	47	18
Ge	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	16	6	4
lope	Mean thermal transmittance of opaque building envelope	U _{op}	W∕(m²⋅K)	1,610	0,270	0,240
Envelope	Mean thermal transmittance of transparent building envelope	U _{wi}	W∕(m²⋅K)	4,640	0,650	0,860
E	Energy carrier per space heating		Natural gas	= 82%, Elec	ctricity = 17%)
/ster	Energy carrier per space cooling		Ele	ctricity = 1	00%	
ng sy	Energy carrier per domestic hot water		Natural gas	= 72%, Elec	ctricity = 23%))
Technical building system	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	0,770	0,200	0,080
chnica	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-
Te	Utilisation energy efficiency	$\eta_{\rm H;u}$	—	-	-	-
	Energy need for space heating	EP _{H;nd;ztc}	kWh/m ²	91,0	25,4	23,0
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	5,3	2,1	1,6
	Energy need for domestic hot water	EP _{W;nd;ztc}	kWh/m ²	87,1	44,9	37,1
	Seasonal space heating energy efficiency	$\eta_{ m s;H}$	_	-	-	-
	Seasonal space cooling energy efficiency	$\eta_{ m s;c}$	—	-	-	-
itors	Seasonal domestic hot water energy efficiency	$\eta_{ m s;W}$	_	-	-	-
Energy indicators	Non-renewable energy performance per space heating	<i>EP</i> _{H;nren}	kWh/m ²	129,4	39,9	35,2
Energy	Non-renewable energy performance per space cooling	<i>EP</i> _{C;nren}	kWh/m ²	-	-	-
	Non-renewable energy performance per domestic hot water	EP _{W;nren}	kWh/m ²	-	-	-
	Overall non-renewable energy performance	<i>EP</i> gl;nren	kWh/m ²	185,6	50,4	42,4
	Overall renewable energy performance	EP _{gl;ren}	kWh/m ²	-	-	-
	Renewable Energy Ratio	RER	%	-	-	-

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

Table 9. Archetype - residential building (AB), climatic zone C2 (Catalonia Region), constructionperiod 1961-1980

	CATALAN EPC DA	TABASE - C2	2_RES_AB_CF	94		
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$
	Compactness ratio	CR	m ⁻¹	2,960	1,310	1,190
try	Thermally heated gross volume	V _{H;g}	m ³	198	336	48
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	75	125	18
Ge	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	20	7	5
lope	Mean thermal transmittance of opaque building envelope	U _{op}	W/(m ² ·K)	1,540	0,280	0,220
Envelope	Mean thermal transmittance of transparent building envelope	U _{wi}	W∕(m²⋅K)	4,640	0,640	0,860
E	Energy carrier per space heating		Natural gas	= 84%, Elec	tricity = 15%)
/ster	Energy carrier per space cooling		Ele	ctricity = 1	00%	
ng sy	Energy carrier per domestic hot water		Natural gas	= 77%, Elec	ctricity = 17%	
Technical building system	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	0,770	0,140	0,110
chnica	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-
Те	Utilisation energy efficiency	$\eta_{\rm H;u}$	_	-	-	-
	Energy need for space heating	EP _{H;nd;ztc}	kWh/m ²	92,2	25,7	20
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	5,3	1,8	1,5
	Energy need for domestic hot water	<i>EP</i> _{W;nd;ztc}	kWh/m ²	100,0	40,0	50,0
	Seasonal space heating energy efficiency	$\eta_{ m s;H}$	—	-	-	-
	Seasonal space cooling energy efficiency	$\eta_{ m s;c}$	_	-	-	-
itors	Seasonal domestic hot water energy efficiency	η _{s;w}	_	-	-	-
Energy indicators	Non-renewable energy performance per space heating	<i>EP</i> _{H;nren}	kWh/m ²	132,6	36,5	31,3
Energy	Non-renewable energy performance per space cooling	<i>EP</i> _{C;nren}	kWh/m ²	-	-	-
	Non-renewable energy performance per domestic hot water	EP _{W;nren}	kWh/m ²	-	-	-
	Overall non-renewable energy performance	<i>EP</i> gl;nren	kWh/m ²	192,8	45,9	39,7
	Overall renewable energy performance	EP _{gl;ren}	kWh/m ²	-	-	-
	Renewable Energy Ratio	RER	%	-	-	-

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

 Table 10. Archetype - residential building (AB), climatic zone C2 (Catalonia Region), construction

 period 1981-2006

	CATALAN EPC DA	TABASE - C2	2_RES_AB_CP	25		
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$
	Compactness ratio	CR	m ⁻¹	2,760	1,850	1,030
try	Thermally heated gross volume	V _{H;g}	m ³	209	56	44
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	80	21	16
Ge	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	18	5	3
lope	Mean thermal transmittance of opaque building envelope	U _{op}	W∕(m²⋅K)	1,040	0,310	0,540
Envelope	Mean thermal transmittance of transparent building envelope	U _{wi}	W∕(m²⋅K)	3,780	0,180	0,240
c	Energy carrier per space heating		Natural gas :	= 75%, Elec	ctricity = 23%	,
/sten	Energy carrier per space cooling		Eleo	ctricity = 1	00%	
ng sy	Energy carrier per domestic hot water		Natural gas	= 71%, Elec	tricity = 26%)
Technical building system	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	0,770	0,230	0,050
chnica	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-
Te	Utilisation energy efficiency	$\eta_{\rm H;u}$	-	-	-	-
	Energy need for space heating	EP _{H;nd;ztc}	kWh/m ²	77,2	26,9	23,1
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	4,6	2,2	1,9
	Energy need for domestic hot water	<i>EP</i> _{W;nd;ztc}	kWh/m ²	84,0	56,0	30,0
	Seasonal space heating energy efficiency	$\eta_{ m s;H}$	_	-	-	-
	Seasonal space cooling energy efficiency	$\eta_{ m s;C}$	_	-	-	-
itors	Seasonal domestic hot water energy efficiency	η _{s;w}	_	-	-	-
Energy indicators	Non-renewable energy performance per space heating	<i>EP</i> _{H;nren}	kWh/m ²	115,4	43,0	36,4
Energy	Non-renewable energy performance per space cooling	<i>EP</i> C;nren	kWh/m ²	-	-	-
	Non-renewable energy performance per domestic hot water	EP _{W;nren}	kWh/m ²	-	-	-
	Overall non-renewable energy performance	<i>EP</i> gl;nren	kWh/m ²	168,2	48,9	43,4
	Overall renewable energy performance	EP _{gl;ren}	kWh/m ²	-	-	-
	Renewable Energy Ratio	RER	%	-	-	-

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

Table 11. Archetype - residential building (AB), climatic zone C2 (Catalonia Region), construction period > 2007

	CATALAN EPC DA	TABASE - C2	2_RES_AB_CP	6		
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$
	Compactness ratio	CR	m ⁻¹	2,760	1,660	1,050
try	Thermally heated gross volume	V _{H;g}	m ³	190	60	43
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	73	22	17
Ge	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	18	4	3
lope	Mean thermal transmittance of opaque building envelope	U _{op}	W∕(m²⋅K)	0,510	0,120	0,100
Envelope	Mean thermal transmittance of transparent building envelope	U _{wi}	W∕(m²⋅K)	3,580	0,20	0,180
c	Energy carrier per space heating		Natural gas	= 53%, Elec	ctricity = 46%	/ 0
/sten	Energy carrier per space cooling		Ele	ctricity = 1	00%	
ng s)	Energy carrier per domestic hot water		Natural gas	= 50%, Elec	ctricity = 49%	0
Technical building system	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	0,980	0,460	0,210
chnica	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-
Te	Utilisation energy efficiency	$\eta_{ m H;u}$	—	-	-	-
	Energy need for space heating	EP _{H;nd;ztc}	kWh/m ²	53,8	21,2	19,5
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	5,0	2,8	2,1
	Energy need for domestic hot water	EP _{W;nd;ztc}	kWh/m ²	84,0	28,0	34,5
	Seasonal space heating energy efficiency	$\eta_{ m s;H}$	_	-	-	-
	Seasonal space cooling energy efficiency	η _{s;c}	—	-	-	-
itors	Seasonal domestic hot water energy efficiency	$\eta_{ m s;W}$	_	-	-	-
Energy indicat	Non-renewable energy performance per space heating	<i>EP</i> _{H;nren}	kWh/m ²	74,7	35,3	31,2
Energy	Non-renewable energy performance per space cooling	<i>EP</i> C;nren	kWh/m ²	-	-	-
	Non-renewable energy performance per domestic hot water	EP _{W;nren}	kWh/m ²	-	-	-
	Overall non-renewable energy performance	EP gl;nren	kWh/m ²	124,1	45,3	40,7
	Overall renewable energy performance	EP _{gl;ren}	kWh/m ²	-	-	-
	Renewable Energy Ratio	RER	%	-	-	-

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

 Table 12. Archetype - residential building (SFH), climatic zone C2 (Catalonia Region), construction

 period 1937-1960

	CATALAN EPC DATABASE - C2_RES_SFH_CP3								
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$			
	Compactness ratio	CR	m ⁻¹	1,140	0,440	0,230			
try	Thermally heated gross volume	V _{H;g}	m ³	263	126	78			
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	96	45	28			
Ge	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	18	6	5			
lope	Mean thermal transmittance of opaque building envelope	U _{op}	W∕(m²⋅K)	1,630	0,250	0,250			
Envelope	Mean thermal transmittance of transparent building envelope	U _{wi}	W∕(m²⋅K)	4,310	0,690	0,590			
c	Energy carrier per space heating		Natural gas	= 68%, Elec	tricity = 15%)			
/sten	Energy carrier per space cooling	Electricity = 100%							
ng s)	Energy carrier per domestic hot water	Natural gas = 49%, Electricity = 30%							
Technical building system	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	0,770	0,150	0,110			
chnica	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-			
Te	Utilisation energy efficiency	$\eta_{\mathrm{H;u}}$	_	-	-	-			
	Energy need for space heating	EP _{H;nd;ztc}	kWh/m ²	139,1	32,2	30,7			
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	6,9	3,3	2,3			
	Energy need for domestic hot water	EP _{W;nd;ztc}	kWh/m ²	112,0	34,8	32,0			
	Seasonal space heating energy efficiency	$\eta_{ m s;H}$	—	-	-	-			
	Seasonal space cooling energy efficiency	η _{s;C}	_	-	-	-			
itors	Seasonal domestic hot water energy efficiency	η _{s;w}	_	-	-	-			
Energy indicat	Non-renewable energy performance per space heating	<i>EP</i> _{H;nren}	kWh/m ²	202,0	56,5	52,1			
Energy	Non-renewable energy performance per space cooling	<i>EP</i> C;nren	kWh/m ²	-	-	-			
	Non-renewable energy performance per domestic hot water	EP _{W;nren}	kWh/m ²	-	-	-			
	Overall non-renewable energy performance	EP gl;nren	kWh/m ²	258,6	65,0	60,5			
	Overall renewable energy performance	EP _{gl;ren}	kWh/m ²	-	-	-			
	Renewable Energy Ratio	RER	%	-	-	-			

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

Table 13. Archetype - residential building (SFH), climatic zone C2 (Catalonia Region), constructionperiod 1961-1980

	CATALAN EPC DATABASE - C2_RES_SFH_CP4								
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$			
	Compactness ratio	CR	m ⁻¹	1,000	0,340	0,190			
try	Thermally heated gross volume	V _{H;g}	m ³	267	125	77			
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	100	46	28			
Ge	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	20	6	4			
lope	Mean thermal transmittance of opaque building envelope	U _{op}	W∕(m²⋅K)	1,560	0,300	0,250			
Envelope	Mean thermal transmittance of transparent building envelope	U _{wi}	W∕(m²⋅K)	4,140	0,820	0,530			
c	Energy carrier per space heating		Natural gas	= 55%, Elec	ctricity = 14%)			
/sten	Energy carrier per space cooling	Electricity = 100%							
ng s)	Energy carrier per domestic hot water	Natural gas = 38%, Electricity = 30%							
Technical building system	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	0,770	0,060	0,110			
chnica	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-			
Те	Utilisation energy efficiency	$\eta_{ m H;u}$	—	-	-	-			
	Energy need for space heating	EP _{H;nd;ztc}	kWh/m ²	151,5	35,2	32,8			
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	7,7	3,3	2,4			
	Energy need for domestic hot water	EP _{W;nd;ztc}	kWh/m ²	112,0	38,0	28,0			
	Seasonal space heating energy efficiency	$\eta_{ m s;H}$	—	-	-	-			
	Seasonal space cooling energy efficiency	η _{s;C}	_	-	-	-			
itors	Seasonal domestic hot water energy efficiency	$\eta_{ m s;W}$	_	-	-	-			
Energy indicat	Non-renewable energy performance per space heating	<i>EP</i> _{H;nren}	kWh/m ²	216,5	59,2	54,6			
Energy	Non-renewable energy performance per space cooling	<i>EP</i> C;nren	kWh/m ²	-	-	-			
	Non-renewable energy performance per domestic hot water	EP _{W;nren}	kWh/m ²	-	-	-			
	Overall non-renewable energy performance	EP gl;nren	kWh/m ²	274,9	67,5	63,2			
	Overall renewable energy performance	EP _{gl;ren}	kWh/m ²	-	-	-			
	Renewable Energy Ratio	RER	%	-	-	-			

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

Table 14. Archetype - residential building (SFH), climatic zone C2 (Catalonia Region), constructionperiod 1981-2006

	CATALAN EPC DAT	ABASE - C2	_RES_SFH_C	P5				
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$		
	Compactness ratio	CR	m ⁻¹	1,180	0,430	0,270		
try	Thermally heated gross volume	V _{H;g}	m ³	336	107	79		
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	128	39	29		
Ge	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	20	5	4		
lope	Mean thermal transmittance of opaque building envelope	U _{op}	W/(m²⋅K)	1,160	0,280	0,530		
Envelope	Mean thermal transmittance of transparent building envelope	U _{wi}	W∕(m²⋅K)	3,780	0,250	0,340		
E	Energy carrier per space heating		Natural gas	= 56%, Elec	ctricity = 16%			
/ster	Energy carrier per space cooling	Electricity = 100%						
ng s)	Energy carrier per domestic hot water	Natural gas = 50%, Electricity = 22%						
Technical building system	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	0,770	0,060	0,090		
chnica	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-		
Ţ	Utilisation energy efficiency	$\eta_{ m H;u}$	_	-	-	-		
	Energy need for space heating	EP _{H;nd;ztc}	kWh/m ²	125,3	33,4	28,7		
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	5,4	2,6	1,8		
	Energy need for domestic hot water	EP _{W;nd;ztc}	kWh/m ²	126,0	42,0	26,0		
	Seasonal space heating energy efficiency	$\eta_{ m s;H}$	—	-	-	-		
	Seasonal space cooling energy efficiency	$\eta_{ m s;c}$	—	-	-	-		
itors	Seasonal domestic hot water energy efficiency	$\eta_{ m s;W}$	_	-	-	-		
Energy indicators	Non-renewable energy performance per space heating	<i>EP</i> H;nren	kWh/m ²	183,5	53,2	47,6		
Energy	Non-renewable energy performance per space cooling	<i>EP</i> C;nren	kWh/m ²	-	-	-		
	Non-renewable energy performance per domestic hot water	EP _{W;nren}	kWh/m ²	-	-	-		
	Overall non-renewable energy performance	<i>EP</i> gl;nren	kWh/m ²	228	60,5	55,1		
	Overall renewable energy performance	EP _{gl;ren}	kWh/m ²	-	-	-		
	Renewable Energy Ratio	RER	%	-	-	-		

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

Table 15. Archetype - residential building (SFH), climatic zone C2 (Catalonia Region), constructionperiod > 2007

	CATALAN EPC DAT	ABASE - C2	_RES_SFH_C	P6		CATALAN EPC DATABASE - C2_RES_SFH_CP6								
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$								
	Compactness ratio	CR	m ⁻¹	1,260	0,740	0,290								
try	Thermally heated gross volume	V _{H;g}	m ³	380	132	84								
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	140	45	30								
Ge	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	23	7	5								
lope	Mean thermal transmittance of opaque building envelope	U _{op}	W∕(m²⋅K)	0,510	0,120	0,190								
Envelope	Mean thermal transmittance of transparent building envelope	U _{wi}	W∕(m²⋅K)	3,440	0,340	0,890								
E	Energy carrier per space heating		Natural gas	= 46%, Elec	ctricity = 38%	,)								
/ster	Energy carrier per space cooling		Ele	ctricity = 1	00%									
ng s)	Energy carrier per domestic hot water	Natural gas = 42%, Electricity = 43%												
Technical building system	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	0,880	0,710	0,110								
chnica	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-								
Те	Utilisation energy efficiency	$\eta_{\mathrm{H;u}}$	—	-	-	-								
	Energy need for space heating	EP _{H;nd;ztc}	kWh/m ²	74,4	30,9	38,6								
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	6,3	3,9	2,3								
	Energy need for domestic hot water	<i>EP</i> _{W;nd;ztc}	kWh/m ²	130,0	38,0	18,0								
	Seasonal space heating energy efficiency	$\eta_{ m s;H}$	—	-	-	-								
	Seasonal space cooling energy efficiency	$\eta_{ m s;C}$	_	-	-	-								
itors	Seasonal domestic hot water energy efficiency	$\eta_{ m s;W}$	_	-	-	-								
Energy indicators	Non-renewable energy performance per space heating	<i>EP</i> H;nren	kWh/m ²	96,1	53,5	61,5								
Energy	Non-renewable energy performance per space cooling	EP C;nren	kWh/m ²	-	-	-								
	Non-renewable energy performance per domestic hot water	EP _{W;nren}	kWh/m ²	-	-	-								
	Overall non-renewable energy performance	<i>EP</i> gl;nren	kWh/m ²	131,7	62,7	75,1								
	Overall renewable energy performance	EP _{gl;ren}	kWh/m ²	-	-	-								
	Renewable Energy Ratio	RER	%	-	-	-								

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

Table 16. Archetype - non-residential building (TRY), climatic zone C2 (Catalonia Region),construction period 1937-1960

	CATALAN EPC D	ATABASE -	C2_TRY_CP3					
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$		
	Compactness ratio	CR	m ⁻¹	2,030	1,050	0,400		
try	Thermally heated gross volume	V _{H;g}	m ³	585	4392	389		
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	198	1519	130		
Ge	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	18	7	6		
Envelope	Mean thermal transmittance of opaque building envelope	U _{op}	W∕(m²⋅K)	1,340	0,310	0,200		
Enve	Mean thermal transmittance of transparent building envelope	U _{wi}	W∕(m²⋅K)	5,080	0,620	1,110		
E	Energy carrier per space heating		Natural gas	= 40%, Elec	ctricity = 57%			
/ster	Energy carrier per space cooling	Electricity = 100%						
ng s)	Energy carrier per domestic hot water	Natural gas = 24%, Electricity = 73%						
Technical building system	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	1,410	0,710	0,320		
chnica	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-		
μ	Utilisation energy efficiency	$\eta_{ m H;u}$	_	-	-	-		
	Energy need for space heating	<i>EP</i> H;nd;ztc	kWh/m ²	84,9	22,3	28,9		
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	10,7	10,2	9,3		
	Energy need for domestic hot water	EP _{W;nd;ztc}	kWh/m ²	10,0	50,0	10,0		
	Seasonal space heating energy efficiency	$\eta_{ m s;H}$	_	-	-	-		
	Seasonal space cooling energy efficiency	η _{s;C}	—	-	-	-		
itors	Seasonal domestic hot water energy efficiency	$\eta_{ m s;W}$	_	-	-	-		
Energy indicators	Non-renewable energy performance per space heating	EP _{H;nren}	kWh/m ²	108,7	27,4	40,3		
Energy	Non-renewable energy performance per space cooling	<i>EP</i> C;nren	kWh/m ²	-	-	-		
	Non-renewable energy performance per domestic hot water	EP _{W;nren}	kWh/m ²	-	-	-		
	Overall non-renewable energy performance	EP gl;nren	kWh/m ²	208,3	58,9	59,3		
	Overall renewable energy performance	EP _{gl;ren}	kWh/m ²	-	-	-		
	Renewable Energy Ratio	RER	%	-	-	-		

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

Table 17. Archetype - non-residential building (TRY), climatic zone C2 (Catalonia Region),construction period 1961-1980

	CATALAN EPC DATABASE - C2_TRY_CP4								
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$			
	Compactness ratio	CR	m ⁻¹	2,090	1,030	0,500			
try	Thermally heated gross volume	V _{H;g}	m ³	400	2449	227			
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	142	854	80			
Ge	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	17	10	6			
lope	Mean thermal transmittance of opaque building envelope	U _{op}	W∕(m²⋅K)	1,260	0,310	0,190			
Envelope	Mean thermal transmittance of transparent building envelope	U _{wi}	W∕(m²⋅K)	5,460	0,240	1,500			
	Energy carrier per space heating		Natural gas :	= 44%, Elec	ctricity = 55%	/)			
/sten	Energy carrier per space cooling	Electricity = 100%							
ng s)	Energy carrier per domestic hot water	Natural gas = 20%, Electricity = 77%							
l buildi	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	1,410	0,520	0,130			
Technical building system	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-			
Те	Utilisation energy efficiency	$\eta_{\mathrm{H;u}}$	-	-	-	-			
	Energy need for space heating	EP _{H;nd;ztc}	kWh/m ²	81,6	25,6	25,3			
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	10,6	11,8	9,2			
	Energy need for domestic hot water	<i>EP</i> _{W;nd;ztc}	kWh/m ²	11,5	63,5	11,5			
	Seasonal space heating energy efficiency	$\eta_{ m s;H}$	_	-	-	-			
	Seasonal space cooling energy efficiency	$\eta_{ m s;C}$	_	-	-	-			
itors	Seasonal domestic hot water energy efficiency	η _{s;w}	_	-	-	-			
Energy indicators	Non-renewable energy performance per space heating	<i>EP</i> H;nren	kWh/m ²	103,8	37,0	37,6			
Energy	Non-renewable energy performance per space cooling	<i>EP</i> _{C;nren}	kWh/m ²	-	-	-			
	Non-renewable energy performance per domestic hot water	EP _{W;nren}	kWh/m ²	-	-	-			
	Overall non-renewable energy performance	<i>EP</i> gl;nren	kWh/m ²	191,8	71,7	51,7			
	Overall renewable energy performance	EP _{gl;ren}	kWh/m ²	-	-	-			
	Renewable Energy Ratio	RER	%	-	-	-			

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

Table 18. Archetype - non-residential building (TRY), climatic zone C2 (Catalonia Region),construction period 1981-2006

	CATALAN EPC D	ATABASE -	C2_TRY_CP5					
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$		
	Compactness ratio	CR	m ⁻¹	2,300	1,130	0,670		
try	Thermally heated gross volume	V _{H;g}	m ³	1556	8970	1270		
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	502	2558	404		
Ge	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	17	10	6		
Envelope	Mean thermal transmittance of opaque building envelope	U _{op}	W∕(m²⋅K)	1,110	0,220	0,280		
Enve	Mean thermal transmittance of transparent building envelope	U _{wi}	W∕(m²⋅K)	4,140	1,560	0,440		
E	Energy carrier per space heating		Natural gas	= 29%, Elec	ctricity = 70%			
/ster	Energy carrier per space cooling	Electricity = 100%						
ng s)	Energy carrier per domestic hot water	Natural gas = 23%, Electricity = 72%						
Technical building system	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	1,440	0,750	0,140		
chnica	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-		
μ	Utilisation energy efficiency	$\eta_{ m H;u}$	_	-	-	-		
	Energy need for space heating	<i>EP</i> H;nd;ztc	kWh/m ²	77,3	29,0	26,0		
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	16,5	13,0	11,9		
	Energy need for domestic hot water	EP _{W;nd;ztc}	kWh/m ²	36,0	220,0	36,0		
	Seasonal space heating energy efficiency	$\eta_{ m s;H}$	_	-	-	-		
	Seasonal space cooling energy efficiency	$\eta_{ m s;c}$	—	-	-	-		
itors	Seasonal domestic hot water energy efficiency	$\eta_{ m s;W}$	_	-	-	-		
Energy indicators	Non-renewable energy performance per space heating	EP _{H;nren}	kWh/m ²	95,5	41,2	38,5		
Energy	Non-renewable energy performance per space cooling	<i>EP</i> C;nren	kWh/m ²	-	-	-		
	Non-renewable energy performance per domestic hot water	EP _{W;nren}	kWh/m ²	-	-	-		
	Overall non-renewable energy performance	EP gl;nren	kWh/m ²	200,5	80,6	53,0		
	Overall renewable energy performance	EP _{gl;ren}	kWh/m ²	-	-	-		
	Renewable Energy Ratio	RER	%	-	-	-		

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

Table 19. Archetype - residential building (AB), climatic zone C3 (Catalonia Region), constructionperiod 1961-1980

	CATALAN EPC DA	TABASE - C3	B_RES_AB_CP	94				
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$		
	Compactness ratio	CR	m ⁻¹	2,830	1,310	1,260		
try	Thermally heated gross volume	V _{H;g}	m ³	181	54	53		
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	70	20	20		
Ge	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	19	8	4		
lope	Mean thermal transmittance of opaque building envelope	U _{op}	W∕(m²⋅K)	1,490	0,380	0,270		
Envelope	Mean thermal transmittance of transparent building envelope	U _{wi}	W∕(m²⋅K)	4,630	0,540	0,850		
E	Energy carrier per space heating		Natural gas	= 81%, Elec	ctricity = 17%	/)		
/ster	Energy carrier per space cooling	Electricity = 100%						
ng sy	Energy carrier per domestic hot water	Natural gas = 37%, Electricity = 55%						
l buildi	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	0,770	0,560	0,110		
Technical building system	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-		
Te	Utilisation energy efficiency	$\eta_{\mathrm{H;u}}$	—	-	-	-		
	Energy need for space heating	EP _{H;nd;ztc}	kWh/m ²	97,2	29,1	24,5		
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	15,9	4,1	3,6		
	Energy need for domestic hot water	<i>EP</i> _{W;nd;ztc}	kWh/m ²	88,0	32,0	32,0		
	Seasonal space heating energy efficiency	$\eta_{ m s;H}$	—	-	-	-		
	Seasonal space cooling energy efficiency	$\eta_{ m s;C}$	_	-	-	-		
itors	Seasonal domestic hot water energy efficiency	$\eta_{ m s;W}$	_	-	-	-		
Energy indicators	Non-renewable energy performance per space heating	<i>EP</i> H;nren	kWh/m ²	132,6	42,2	34,9		
Energy	Non-renewable energy performance per space cooling	<i>EP</i> C;nren	kWh/m ²	-	-	-		
	Non-renewable energy performance per domestic hot water	<i>EP</i> _{W;nren}	kWh/m ²	-	-	-		
	Overall non-renewable energy performance	EP gl;nren	kWh/m ²	219,9	51,9	45,0		
	Overall renewable energy performance	EP _{gl;ren}	kWh/m ²	-	-	-		
	Renewable Energy Ratio	RER	%	-	-	-		

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

 Table 20. Archetype - residential building (AB), climatic zone C3 (Catalonia Region), construction

 period 1981-2006

	CATALAN EPC DA	TABASE - C3	B_RES_AB_CP	25				
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$		
	Compactness ratio	CR	m ⁻¹	2,710	1,770	1,170		
try	Thermally heated gross volume	V _{H;g}	m ³	182	46	48		
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	71	18	19		
Ge	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	18	5	3		
lope	Mean thermal transmittance of opaque building envelope	U _{op}	W∕(m²⋅K)	0,990	0,220	0,440		
Envelope	Mean thermal transmittance of transparent building envelope	U _{wi}	W∕(m²⋅K)	3,780	0,570	0,110		
c	Energy carrier per space heating		Natural gas	= 62%, Elec	ctricity = 35%)		
/sten	Energy carrier per space cooling	Electricity = 100%						
ng s)	Energy carrier per domestic hot water	Natural gas = 38%, Electricity = 58%						
buildi	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	1,000	0,330	0,230		
Technical building system	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-		
Te	Utilisation energy efficiency	$\eta_{\mathrm{H;u}}$	-	-	-	-		
	Energy need for space heating	EP _{H;nd;ztc}	kWh/m ²	84,0	25,7	22,2		
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	13,7	3,6	3,0		
	Energy need for domestic hot water	<i>EP</i> _{W;nd;ztc}	kWh/m ²	84,0	28,0	28,0		
	Seasonal space heating energy efficiency	$\eta_{ m s;H}$	_	-	-	-		
	Seasonal space cooling energy efficiency	$\eta_{ m s;C}$	—	-	-	-		
itors	Seasonal domestic hot water energy efficiency	$\eta_{ m s;W}$	_	-	-	-		
Energy indicators	Non-renewable energy performance per space heating	<i>EP</i> H;nren	kWh/m ²	117,1	39,4	33,3		
Energ)	Non-renewable energy performance per space cooling	<i>EP</i> _{C;nren}	kWh/m ²	-	-	-		
	Non-renewable energy performance per domestic hot water	EP _{W;nren}	kWh/m ²	-	-	-		
	Overall non-renewable energy performance	<i>EP</i> gl;nren	kWh/m ²	203,0	45,8	44,3		
	Overall renewable energy performance	EP _{gl;ren}	kWh/m ²	-	-	-		
	Renewable Energy Ratio	RER	%	-	-	-		

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

 Table 21. Archetype - residential building (SFH), climatic zone C3 (Catalonia Region), construction

 period 1981-2006

	CATALAN EPC DAT	ABASE - C3	_RES_SFH_C	P5				
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$		
	Compactness ratio	CR	m ⁻¹	1,110	0,400	0,260		
try	Thermally heated gross volume	V _{H;g}	m ³	270	93	74		
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	104	34	29		
Ge	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	20	6	4		
Envelope	Mean thermal transmittance of opaque building envelope	U _{op}	W∕(m²⋅K)	1,070	0,200	0,400		
Enve	Mean thermal transmittance of transparent building envelope	U _{wi}	W∕(m²⋅K)	3,780	0,650	0,20		
E	Energy carrier per space heating		Natural gas	= 53%, Elec	ctricity = 22%	/)		
/sten	Energy carrier per space cooling	Electricity = 100%						
ng s)	Energy carrier per domestic hot water	Natural gas = 29%, Electricity = 46%						
buildi	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	0,770	0,320	0,010		
Technical building system	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-		
Te	Utilisation energy efficiency	$\eta_{\mathrm{H;u}}$	-	-	-	-		
	Energy need for space heating	EP _{H;nd;ztc}	kWh/m ²	122,9	32,7	29,7		
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	17,1	3,9	3,8		
	Energy need for domestic hot water	EP _{W;nd;ztc}	kWh/m ²	112,0	28,0	28,0		
	Seasonal space heating energy efficiency	$\eta_{ m s;H}$	_	-	-	-		
	Seasonal space cooling energy efficiency	$\eta_{ m s;c}$	_	-	-	-		
itors	Seasonal domestic hot water energy efficiency	$\eta_{ m s;W}$	-	-	-	-		
Energy indicators	Non-renewable energy performance per space heating	EP _{H;nren}	kWh/m ²	171,1	49,5	48,0		
Energy	Non-renewable energy performance per space cooling	<i>EP</i> C;nren	kWh/m ²	-	-	-		
	Non-renewable energy performance per domestic hot water	EP _{W;nren}	kWh/m ²	-	-	-		
	Overall non-renewable energy performance	<i>EP</i> gl;nren	kWh/m ²	239,2	60,4	56,8		
	Overall renewable energy performance	EP _{gl;ren}	kWh/m ²	-	-	-		
	Renewable Energy Ratio	RER	%	-	-	-		

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

Table 22. Archetype - residential building (AB), climatic zone D2 (Catalonia Region), constructionperiod 1961-1980

	CATALAN EPC DA	TABASE - D2	2_RES_AB_CF	94				
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$		
	Compactness ratio	CR	m ⁻¹	2,820	1,340	1,210		
try	Thermally heated gross volume	V _{H;g}	m ³	198	50	34		
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	76	19	13		
Ge	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	17	4	3		
lope	Mean thermal transmittance of opaque building envelope	U _{op}	W∕(m²⋅K)	1,530	0,340	0,240		
Envelope	Mean thermal transmittance of transparent building envelope	U _{wi}	W∕(m²⋅K)	4,220	0,780	0,470		
c	Energy carrier per space heating		Natural gas	= 88%, Ele	ctricity = 9%			
/sten	Energy carrier per space cooling	Electricity = 100%						
ng s)	Energy carrier per domestic hot water	Natural gas = 73%, Electricity = 21%						
buildi	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	0,770	0,060	0,110		
Technical building system	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-		
Te	Utilisation energy efficiency	$\eta_{\mathrm{H;u}}$	—	-	-	-		
	Energy need for space heating	EP _{H;nd;ztc}	kWh/m ²	131,8	35,0	29,8		
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	5,3	2,0	1,7		
	Energy need for domestic hot water	<i>EP</i> _{W;nd;ztc}	kWh/m ²	112,0	28,0	28,0		
	Seasonal space heating energy efficiency	$\eta_{ m s;H}$	_	-	-	-		
	Seasonal space cooling energy efficiency	$\eta_{ m s;C}$	_	-	-	-		
itors	Seasonal domestic hot water energy efficiency	η _{s;w}	_	-	-	-		
Energy indicators	Non-renewable energy performance per space heating	<i>EP</i> H;nren	kWh/m ²	196,6	56,4	46,8		
Energy	Non-renewable energy performance per space cooling	<i>EP</i> C;nren	kWh/m ²	-	-	-		
	Non-renewable energy performance per domestic hot water	EP _{W;nren}	kWh/m ²	-	-	-		
	Overall non-renewable energy performance	<i>EP</i> gl;nren	kWh/m ²	265,6	58,5	55,6		
	Overall renewable energy performance	EP _{gl;ren}	kWh/m ²	-	-	-		
	Renewable Energy Ratio	RER	%	-	-	-		

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

 Table 23. Archetype - residential building (AB), climatic zone D2 (Catalonia Region), construction

 period 1981-2006

	CATALAN EPC DA	TABASE - D2	2_RES_AB_CF	25				
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$		
	Compactness ratio	CR	m ⁻¹	3,070	1,690	1,360		
try	Thermally heated gross volume	V _{H;g}	m ³	195	40	39		
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	76	15	16		
Ge	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	17	3	3		
lope	Mean thermal transmittance of opaque building envelope	U _{op}	W∕(m²⋅K)	1,000	0,240	0,490		
Envelope	Mean thermal transmittance of transparent building envelope	U _{wi}	W∕(m²⋅K)	3,780	0,000	0,340		
E	Energy carrier per space heating		Natural gas	= 83%, Elec	tricity = 15%	,)		
/ster	Energy carrier per space cooling		Ele	ctricity = 1	00%			
ng s)	Energy carrier per domestic hot water	Natural gas = 78%, Electricity = 20%						
Technical building system	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	0,770	0,060	0,110		
chnica	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-		
Те	Utilisation energy efficiency	$\eta_{\mathrm{H;u}}$	—	-	-	-		
	Energy need for space heating	EP _{H;nd;ztc}	kWh/m ²	110,4	27,6	26,2		
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	4,3	2,0	1,9		
	Energy need for domestic hot water	<i>EP</i> _{W;nd;ztc}	kWh/m ²	112,0	13,0	32,0		
	Seasonal space heating energy efficiency	$\eta_{ m s;H}$	—	-	-	-		
	Seasonal space cooling energy efficiency	$\eta_{ m s;C}$	_	-	-	-		
itors	Seasonal domestic hot water energy efficiency	$\eta_{ m s;W}$	_	-	-	-		
Energy indicators	Non-renewable energy performance per space heating	<i>EP</i> H;nren	kWh/m ²	171,4	48,7	43,1		
Energ)	Non-renewable energy performance per space cooling	<i>EP</i> _{C;nren}	kWh/m ²	-	-	-		
	Non-renewable energy performance per domestic hot water	EP _{W;nren}	kWh/m ²	-	-	-		
	Overall non-renewable energy performance	<i>EP</i> gl;nren	kWh/m ²	230,2	52,0	49,3		
	Overall renewable energy performance	EP _{gl;ren}	kWh/m ²	-	-	-		
	Renewable Energy Ratio	RER	%	-	-	-		

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.

Table 24. Archetype - residential building (AB), climatic zone D3 (Catalonia Region), constructionperiod 1961-1980

CATALAN EPC DATABASE - D3_RES_AB_CP4						
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$
Geometry	Compactness ratio	CR	m ⁻¹	3,000	1,410	1,250
	Thermally heated gross volume	V _{H;g}	m ³	224	70	43
	Thermally heated floor area	A _{H;use;ztc}	m²	86	26	16
	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	15	4	3
Envelope	Mean thermal transmittance of opaque building envelope	U _{op}	W∕(m²⋅K)	1,510	0,370	0,210
	Mean thermal transmittance of transparent building envelope	U _{wi}	W∕(m²⋅K)	4,220	0,780	0,550
Technical building system	Energy carrier per space heating	Natural gas = 80%, Electricity = 9%				
	Energy carrier per space cooling	Electricity = 100%				
	Energy carrier per domestic hot water	Natural gas = 73%, Electricity = 18%				
	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	0,740	0,040	0,120
	Mean seasonal efficiency of the heating generation sub-system	$\eta_{ m H;gn}$	_	-	-	-
	Utilisation energy efficiency	$\eta_{\mathrm{H;u}}$	—	-	-	-
Energy indicators	Energy need for space heating	EP _{H;nd;ztc}	kWh/m ²	128,3	27,8	28,6
	Energy need for space cooling	EP _{C;nd;ztc}	kWh/m ²	13,2	3,6	2,9
	Energy need for domestic hot water	<i>EP</i> _{W;nd;ztc}	kWh/m ²	112,0	38,0	49,3
	Seasonal space heating energy efficiency	$\eta_{ m s;H}$	—	-	-	-
	Seasonal space cooling energy efficiency	$\eta_{ m s;C}$	_	-	-	-
	Seasonal domestic hot water energy efficiency	$\eta_{ m s;W}$	_	-	-	-
	Non-renewable energy performance per space heating	EP _{H;nren}	kWh/m ²	209,5	48,6	52,3
	Non-renewable energy performance per space cooling	EP _{C;nren}	kWh/m ²	-	-	-
	Non-renewable energy performance per domestic hot water	EP _{W;nren}	kWh/m ²	-	-	-
	Overall non-renewable energy performance	EP gl;nren	kWh/m ²	276,3	55,3	57,0
	Overall renewable energy performance	EP _{gl;ren}	kWh/m ²	-	-	-
	Renewable Energy Ratio	RER	%	-	-	-

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement N° 101033819.